ALGEBRA

Question 1

An arithmetic sequence is defined in such a way that the 15th term, $u_{15} = 92$, and the 3rd term,

 $u_3 = 56$.

- (a) Determine
 - (i) the common difference.
 - (ii) the first term.
- (b) Calculate S_{12} .

Question 2

A geometric sequence is such that its 4th term, $u_4 = 135$ and the ratio $\frac{u_9}{u_4} = 3^5$.

- (a) Find (i) the common ratio.
 - (ii) the first term.
- (b) If $S_{10} = a(b-1)$, determine the real constants a and b.

Question 3

Consider the sequence defined by the equation $u_n = 1 - 9n$, n = 1, 2, 3, ..., where u_n represents the *n*th term of the sequence.

- (a) Write down the value of u_1, u_2 and u_3 .
- (b) Calculate $\sum_{n=1}^{10} (1-9n)$.

Question 4

Solve for *x* in each of the following equations

(a)
$$\log_2 x^4 = \log_2 16$$
.

(b)
$$\log_{x} 27 = 3$$
.

- (c) $\log_4 32 = x$.
- (d) $\log_3(1-x) \log_3 x = 2$.

The *n*th term of a sequence is given by

$$u_n = \frac{2}{3} \times 3^n, n = 1, 2, 3, \dots$$

If
$$\sum_{n=1}^{20} \left(\frac{2}{3} \times 3^n\right) = a(3^{20} - b)$$
, determine the values of a and b .

Question 6

Solve the following equations for *x*.

- (a) x 4 = 4.
- (b) |x-4| = 4.
- (c) $\log_2(x-4) = 4$.
- (d) $x^2 4 = 4$.
- (e) $\log_2(x-2) + \log_2(x+2) = 2$.

Question 7

Solve the following equations for *x*.

(a) (i)
$$2x - 1 = 14$$
.
(ii) $\frac{3 - x}{2} = x$.

(b) (x-2)(x+1) = 1.

- (a) (i) Factorise the quadratic expression $x^2 6x + 5$.
 - (ii) Solve the inequality for x, where $x^2 6x + 5 > 0$.
- (b) For what values of *x* is
 - (i) $\log_{10}(6-x)$ defined?
 - (ii) $\log_{10}(x-4)$ defined?
- (c) Solve for x, the equation $\log_{10}(x^2 6x + 5) = \log_{10}(6 x) + \log_{10}(x 4)$.

- (a) (i) Expand (a + 1)(a² + 2a 1).
 (ii) Solve for a the equation a³ + 3a² + a 1 = 0.
- (b) Solve for x where $(\ln x)^3 + 3(\ln x)^2 + \ln x = 1$.

Question 10

- (a) (i) Expand (x + a)(x + 1).
 (ii) Factorise x² + 3x + 2.
- (b) Solve each of the following equations for *x*,
 - (i) $x^2 (e+1)x + e = 0$.
 - (ii) $e^{2x} (e+1)e^x + e = 0$.

Question 11

The first three consecutive terms of an arithmetic sequence are k - 2, 2k + 1 and 4k + 2.

- (a) Find the value of *k*.
- (b) Find (i) u_{10} . (ii) S_{10} .

Question 12

The first three terms of a geometric sequence are given by $\sqrt{3} + 1$, x and $\sqrt{3} - 1$, where x > 0.

- (a) Find x.
- (b) Find S_{∞} .

Question 13

Given that $\frac{1}{2} + 1 + 2 + 2^2 + ... + 2^{10} = a \times 2^b + c$, find the values *a*, *b* and *c*.

Question 14

A geometric sequence is such that each term is equal to the sum of the two terms directly following it. Find the positive common ratio.

An arithmetic sequence is such that $u_p = q$ and $u_q = p$.

(a) Find, in terms of p and q, u_1 .

(b) Find S_{p+q} .

Question 16

Solve each of the following equations for *x*.

(a) $x^2 + x - 2 = 0$. (1)

(b)
$$(\ln(x))^2 - \ln\left(\frac{1}{x}\right) - 2 = 0.$$

(c)
$$2^x - 2 \times 2^{-x} + 1 = 0$$
.

Question 17

(a) Expand (2a+1)(3-a).

(b) Solve (i)
$$\log_{10}(2x-5) + \log_{10}(x) = \log_{10}3$$
.
(ii) $2 \times 3^{2x-1} - 5 \times 3^{x-1} - 1 = 0$.

Question 18

Find <i>k</i> if	(i)	$\log_2(2k-a) = 3.$
	(ii)	$\log_{10} k = 1 + \log_{10} 5 .$
	(iii)	$3\ln 2 - 2\ln 3 = -\ln k.$

- (a) If $\log(a-b) = \log a \log b$, find an expression for a in terms of b, stating any restrictions on b.
- (b) If $a^2 + b^2 2ab = 4$ and ab = 4, where a > 0, b > 0, find the value of $2\log_{20}(a+b)$.

Mathematics HL – Paper One Style Questions

Question 20

Solve the simultaneous equations $\begin{array}{l}
9^{x-y} = 27 \\
2^{x+y} = 32
\end{array}$

Question 21

If $x = \log_a n$ and $y = \log_c n$ where a, c > 0 and $n \neq 1$, prove that

$$\frac{x-y}{x+y} = \frac{\log_b c - \log_b a}{\log_b c - \log_b a}, b > 0$$

Question 22

A sequence of numbers have the property that x, 12, y, where x > 0, y > 0 form a geometric sequence while 12, x, 3y form an arithmetic sequence.

(a) If xy = k, find k.

- (b) Find the value of *x* and *y*.
- (c) For the sequence x, 12, y, find (i) the common ratio. (ii) the sum to infinity.

Question 23

The numbers α and β are such that their arithmetic mean is 17 while their geometric mean is 8. Find α and β .

Question 24

Given that the sequence with general term u_i , has its sum defined by $\sum_{i=1}^n u_i = n(n+2)$, find

(a)
$$\sum_{i=1}^{10} u_i$$
.

- (b) (i) the first term, u_1 .
 - (ii) the second term, u_2 .
- (c) (i) the *r*th term.
 - (ii) the 20th term.

Mathematics HL - Paper One Style Questions

Question 24

(a) Given that
$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = a + \frac{b}{n+1}$$
, find a and b.

(b) Find $\sum_{k=10}^{99} \frac{1}{k(k+1)}$, giving your answer in the form $\frac{m}{n}$, where *m* and *n* have no common factors.

Question 25

- (a) Show that $\log_{(a^n)}(x^n) = \log_a x, a > 0, a \neq 1, x > 0, n \neq 0.$
- (b) Hence find $\log_{\sqrt{5}} 5$.

Question 26

One solution to the equation $5^{x+1} = 3^{x^2-1}$ is given by $x = a + \log_3 b$. Find the other solution and the values *a* and *b*.

Question 27

(a) Simplify
$$\frac{5^{2n-1}-5^{2n-3}}{5^{2n}+5^{2n-2}}$$
.

(b) If $2^x = 5$ and $2 = 5^y$, find xy.

Question 28

Solve the equation $\log_4(3 \times 2^{x+1} - 8) = x$.

Question 29

Prove by mathematical induction, that $8^n - 3^n$ where $n \in \mathbb{Z}^+$, is divisible by 5.

Question 30

Find all values of *x* such that $2^{2x} - 2^{x+1} < 3$.

Find the constant term in the expansion $\left(2x + \frac{1}{x}\right)^{2n}$.

Question 32

Three consecutive coefficients in the expansion of $(1 + x)^n$ are $\binom{n}{r}$, $\binom{n}{r+1}$ and $\binom{n}{r+2}$ and are in the ratio 6 : 3 : 1.

- (a) Show that 2n 3r = 1 and 3n 4r = 5.
- (b) Which terms are they?

Question 33

Given that (3 - i) is a zero of the polynomial $p(x) = x^3 - 5x^2 + 4x + 10$, find the other zeros.

Question 34

Given that $(\sqrt{3} + i)^8 = -a^7(b + ci)$, find the values of *a*, *b* and *c*.

Question 35

Express $\frac{1+i\sqrt{3}}{1-i\sqrt{3}}$ in the form $z = re^{i\theta}$.

Question 36

If
$$\frac{1}{(1+i)^2} + \frac{1}{(1-i)^2} = a + bi$$
, $a, b \in \mathbb{R}$, find a and b .

Question 37

Given that $w = \frac{z}{z-i}$, where z = a + bi, $a, b \in \mathbb{R}$, show that if w is a real number then z is a pure imaginary number.

If
$$m + ni = \frac{i(4-3i)}{(1-i)^2}$$
.

(a) find m and n.

(b) express
$$\frac{i(4-3i)}{(1-i)^2}$$
 in the form $z = re^{i\theta}$.

Question 39

Given that $w = -1 + \sqrt{3}i$ and z = 1 - i, find

- (a) (i) |w|, Arg(w). (ii) |z|, Arg(z). (iii) |zw|, Arg(zw).
- (b) (i) Find wz.
 - (ii) Hence find the exact value of $\sin\left(\frac{5\pi}{12}\right)$.

Question 40

If
$$z = \frac{a}{1+i}$$
 and $w = \frac{b}{1+2i}$ where $a, b \in \mathbb{R}$, find a and b given that $z + w = 1$.

Question 41

When the polynomial $p(x) = x^4 + ax + 2$ is divided by $x^2 + 1$ the remainder is 2x + 3. Find the value of *a*.

- (a) (i) If $z_1 = 2cis\left(\frac{\pi}{4}\right)$ find z_1^4 .
 - (ii) Draw z_1 on an Argand diagram.
- (b) How many solutions to $z^4 = -16$ are there if $z \in \mathbb{C}$?
- (c) Solve $z^5 + 16z = 0, z \in \mathbb{C}$.

The two square roots of 5 - 12i take on the form x + iy, $x, y \in \mathbb{R}$. Find both values of z for which $z^2 = 5 - 12i$, giving your answer in the form x + iy, $x, y \in \mathbb{R}$.

Question 44

Find the four fourth roots of the complex number $1 + \sqrt{3}i$, giving your answer in the form $re^{i\theta}$, $-\pi < \theta \le \pi$.

Question 45

Find *a* and *b*, where $a, b \in \mathbb{R}$ in each of the following cases

- (a) a+bi = i.
- (b) $(a+bi)^2 = i$.
- (c) $(a+bi)^3 = i$.

Question 46

If $(a + bi)^n = x + iy$, $n \in \mathbb{Z}^+$, show that $x^2 + y^2 = (a^2 + b^2)^k$ where k is a function of n. Expresss k in terms of n.

FUNCTIONS AND EQUATIONS

Question 1

Consider the function
$$g(x) = \frac{1}{\sqrt{x-3}}, x \in X$$
.

(a) Find (i) g(4). (ii) g(12). (iii) g(9).

(b) Find the largest set X for which g(x) is defined.

(c) Sketch the graph of g(x) using its maximal domain X.

Question 2

Consider the functions $f(x) = \frac{1}{x-1}$ and $g(x) = x^3$.

(a)	Determine the maximal domain of	(i)	f(x).
		(ii)	g(x).

(b) (i) Justify the existence of (gof)(x).
(ii) Find (gof)(x).

Question 3

Consider the function $f(x) = \sqrt{7-x}$.

- (a) Find (i) f(3). (ii) f(7).
- (b) What is the maximal domain of f(x).
- (c) Find (i) $g(x) = \frac{1}{f(x)}$ and determine the implicit domain of g(x). (ii) $h(x) = f^{-1}(x)$ and determine the implicit domain of h(x).

Given the function $f(x) = \frac{1}{1 + e^{2x}}$, $x \in \mathbb{R}$ and the fact that f(x) + f(-x) = ax + b, where $a, b \in \mathbb{R}$, find the values of *a* and *b*.

Question 5

Consider the function $f(x) = 3x^2 - 6x + 7$.

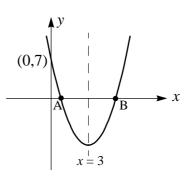
- (a) Express f(x) in the form $a(x-h)^2 + k$, where $a, b, c \in \mathbb{Z}^+$.
- (b) For the graph of f(x) write down the
 - (i) coordinates of its vertex.
 - (ii) equation of the axis of symmetry.
- (c) (i) Find the coordinates of the *y*-intercept.
 - (ii) Sketch the graph of f(x), clearly labelling the vertex, y-intercept and axis of symmetry.

Question 6

- (a) Determine the maximal domain of $f(x) = \ln(x+1)$.
- (b) If $g(x) = e^x$,
 - (i) justify the existence of $(f \circ g)(x)$.
 - (ii) find $(f \circ g)(x)$.
 - (iii) state the maximal domain of $(f \circ g)(x)$.

Question 7

The graph of the function $g(x) = 2x^2 - 12x + 7$ is shown below. The coordinates of B are $\left(a + \sqrt{\frac{b}{c}}, 0\right)$ where $a, b, c \in \mathbb{Z}$. Find the values of a, b and c.



Mathematics HL - Paper One Style Questions

Question 8

Consider the function $g(x) = x + \frac{1}{x}, x > 0$.

- (a) (i) Find g(2).
 (ii) Find the *x*-value for which g(x) = 2.
- (b) The composite function $(g \circ g)(x) = \frac{f(x)}{x(1+x^2)}, x > 0$. Find f(x).

Question 9

- (a) Find the $(f \circ g)(x)$ where $g(x) = e^x + 1, x \in \mathbb{R}$ and $f(x) = (x 1)\ln(x 1), x > 1$.
- (b) Find $\{x : (f \circ g)(x) = 2x\}$.
- (c) What would the solution to $(f \circ g)(x) = 2x$ be if $g(x) = e^x + 1, x > 0$?

Question 10

- (a) Find the inverse function, f^{-1} , of $f(x) = \frac{1}{x-2}$, x > 2.
- (b) On the same set of axes, sketch the graphs of f(x) and $f^{-1}(x)$.
- (c) Find the coordinates of the point of intersection of f(x) and $f^{-1}(x)$.

Question 11

Consider the function $f_k(x) = \frac{e^{-kx}}{2 + e^{-x}}, x \in \mathbb{R}$.

(a) Find (i)
$$\{x : f_2(x) = 1\}$$
.
(ii) $\left\{x : f_1(x) = \frac{1}{2}\right\}$.

(b) For what values of *a* will
$$\left\{x : f_1(x) = \frac{1}{a}\right\} = \mathbb{R}$$
.

- (a) On the same set of axes, sketch the graphs of $f(x) = x^2 4$ and $g(x) = \sqrt{x-2}$.
- (b) What is the domain of $(f \circ g)(x)$?
- (c) Find (i) $(f \circ g)(x)$. (ii) the range of $(f \circ g)(x)$.

Question 13

The graph of $f(x) = -1 + \ln(x-1)$, x > a is shown.

- (a) Find the values of *a* and *b*.
- (b) Find $f^{-1}(x)$.
- (c) Sketch the graph of $f^{-1}(x)$.

Question 14

Find the maximal domain of $h(x) = \frac{1}{\ln(\ln x)}$.

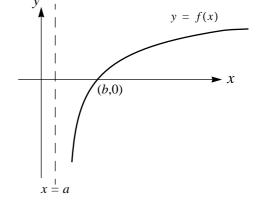
Question 15

- (a) On the same set of axes sketch the graphs of f(x) = 5x + 2 and $g(x) = 3x^2$.
- (b) Find (i) $\{x: f(x) = g(x)\}.$ (ii) $\{x: 3x^2 \le 5x + 2\}.$

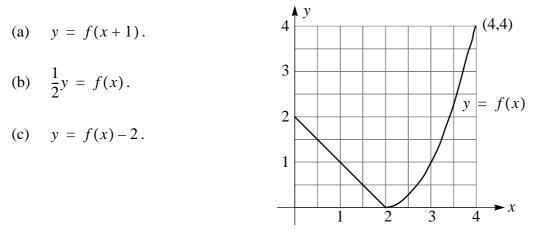
Question 16

Consider the function $f: A \to \mathbb{R}$, where $f(x) = \log_3(3x+2)$.

- (a) Find the largest set A for which *f* is defined.
- (b) (i) Define fully, the inverse, f^{-1} .
 - (ii) Sketch the graph of $f^{-1}(x)$.
 - (iii) If $g(x) = 3^x$, express $f^{-1}(x)$ in terms of g(x).



For the graph shown below, sketch, on different sets of axes, the graphs of



Question 18

Let $f(x) = \frac{1}{x}$, $x \neq 0$. The graph of g(x) is a translation of the graph of f(x) defined by the matrix $\binom{3}{2}$.

- (a) Find an expression for g(x)
 - (i) in terms of f(x).
 - (ii) in terms of x.
- (b) On the same set of axes, sketch the graphs of
 - (i) f(x).
 - (ii) g(x), for x > 3.

Question 19

The function g(x) = ax - b passes through the points with coordinates (1, 9) and (-3, 1). Find *a* and *b*.

Let $f(x) = x^2, x \in \mathbb{R}$.

(a) Sketch the graph of f.

The graph of f is transformed to the graph of g by a translation $\begin{pmatrix} -1 \\ 2 \end{pmatrix}$.

- (b) Find an expression for g(x) in terms of
 (i) f(x).
 (ii) x.
- (c) (i) Find $\{x : g(x) = 0\}$.
 - (ii) Find g(0).
 - (iii) Sketch the graph of g(x).

Question 21

Given that
$$f(x) = \frac{x-1}{x+1}$$
, find (a) $f(1)$.
(b) $f^{-1}(-1)$.

Question 22

The function f(x) undergoes a transformation defined by the matrix $\begin{pmatrix} a \\ -b \end{pmatrix}$ to produce the new function g(x).

(a) Express g(x) in terms of f(x).

(b) If $f(x) = x^2 - 2x + 4$ and $g(x) = x^2 - 2x + 8$, find *a* and *b*.

Question 23

Let $f(x) = 2e^{-x} + 3, x \in \mathbb{R}$, find (a) f(-1).

(b) $f^{-1}(4)$.

Let $f(x) = x^3$ and g(x) = x - 1. Find

- (a) $(f \circ g)(1)$.
- (b) $(g \circ f)(2)$.

Question 25

Consider the function $f(x) = \begin{cases} x-2, & \text{if } x < 0\\ (x-1)^2 - 3k, & \text{if } x \ge 0 \end{cases}$.

- (a) Find the value of k for which f(x) is continuous for $x \in \mathbb{R}$.
- (b) Using the value of k in (a), sketch the graph of f(x), clearly labelling all intercepts with the axes.

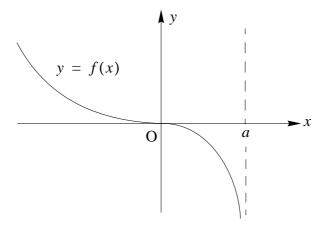
Question 26

Find all real values of k so that the graph of the function $h(x) = 2x^2 - kx + k$, $x \in \mathbb{R}$ cuts the x-axis at two distinct points.

- (a) Sketch the graph of $f(x) = x^2 4x + 5$, clearly showing and labelling the coordinates of its vertex.
- (b) Find (i) $\lim_{x \to \infty} \frac{4}{x^2 - 4x + 5}$ (ii) $\lim_{x \to -\infty} \frac{4}{x^2 - 4x + 5}$
- (c) Given that $g(x) = \frac{4}{f(x)}$,
 - (i) state the maximal domain of g(x).
 - (ii) sketch the graph of g(x).
 - (iii) find the range of g(x).

(a) On the same set of axes sketch the curves of y = |x| and $y = \ln(1-x)$.

The graph of the function $f(x) = |x| \ln(1-x)$, x < a is shown below.



(b) Find the value of *a*.

(c) Sketch the graph of
(i)
$$y = |f(x)|$$
.
(ii) $y = f(|x|)$.
(iii) $y = \frac{1}{f(x)}$.

(d) Sketch the graph of $g(x) = |x| \ln(2-x)$.

Question 29

- (a) (i) Sketch the graph of f(x) = |2x+1|.
 - (ii) Solve |2x + 1| = 3.
 - (iii) Hence solve for x if g(x) = 0 where $g(x) = (2x+1)^2 |2x+1| 6$.
- (b) For what values of x will $(2x+1)^2 |2x+1| > 6$?

Question 30

(a) (i)
$$\frac{|x-3|}{2x} = \begin{cases} f(x), x \ge 3\\ g(x), x < 3 \end{cases}$$
. Find $f(x)$ and $g(x)$.
(ii) Sketch the curve of $y = \frac{|x-3|}{2x}$.

(b) Find all real values of x that satisfy the inequality $\frac{|x-3|}{2x} < 1$.

- (a) (i) Sketch the curve y = (x + 2)|x + 2|.
 (ii) Hence find all real values of x for which (x + 2)|x + 2| < 9.
- (b) Find $\{x \mid (x+2) \mid x-2 \mid < 3\}$.

Question 32

The polynomial $p(x) = ax^3 - x^2 + bx + 6$ is divisible by (x + 2) and has a remainder of 10 when divided by (x + 1).

- (a) Find the values of *a* and *b*.
- (b) Find $\{x \mid p(x) < 6 7x\}$.

Question 33

Consider the curve with equation $y = \frac{x}{x^2 + 4}$.

- (a) Show that $yx^2 x + 4y = 0$.
- (b) **Hence**, given that $-a \le y \le a$ for all real values of *x*, find *a*.

Question 34

Find the value of *a* which makes the function defined by $f(x) = \begin{cases} x + 7, x \le 3 \\ a \times 2^x, x > 3 \end{cases}$ continuous for all real values of *x*.

- (a) Sketch the graph of the polynomial $p(x) = x^3 x^2 5x 3$.
- (b) Find all real values of *x* for which
 - (i) $x^3 x^2 5x 3 < 4(x 3)$.
 - (ii) $x^3 x^2 5x 3 > (x + 1)(x 3)$.

Given that a + b = 2, find the values of a and b so that the function $f(x) = \begin{cases} ax + 1, x < \frac{\pi}{2} \\ \sin x + b, x \ge \frac{\pi}{2} \end{cases}$

is continuous for all values of x.

Question 37

Given that $h(x) = 9^x + 9$ and $g(x) = 10 \times 3^x$, find $\{x \mid h(x) < g(x)\}$.

CIRCULAR FUNCTIONS AND TRIGONOMETRY

Question 1

Given that $0 \le \theta \le \frac{\pi}{2}$ and $\tan \theta = \frac{3}{4}$, find

- (a) $\cos\theta$.
- (b) $\sin 2\theta$.
- (c) $\tan\left(\frac{\pi}{2}-\theta\right)$.

Question 2

Given that
$$0 < \theta \le \frac{\pi}{2}$$
, arrange, in increasing order, $\sin \theta$, $\frac{1}{\sin \theta}$, $\sin^2 \theta$.

Question 3

(a) If
$$0 < \theta < 90^{\circ}$$
 and $\cos \theta = \frac{1}{3}a$, find $\sin \theta$.

(b) Express
$$\frac{\pi}{5}$$
 in degrees.

(c) Evaluate $\cos 300^{\circ} \cos 30^{\circ}$

(d) Express in terms of
$$\tan \theta$$
, $\frac{\sin(\pi - \theta)}{\cos(\frac{\pi}{2} + \theta)} \cdot \tan(\frac{3\pi}{2} - \theta)$.

(a) Express
$$\frac{1}{\cos \theta - 1} - \frac{1}{\cos \theta + 1}$$
 in terms of $\sin \theta$.

(b) Solve
$$\frac{1}{\cos \theta - 1} - \frac{1}{\cos \theta + 1} = -8, 0^{\circ} < \theta < 360^{\circ}$$

Mathematics HL – Paper One Style Questions

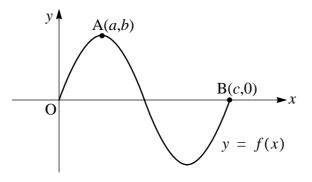
Question 5

(a) Given that
$$\cos\theta\sin\theta = \frac{1}{2}$$
, evaluate $(\cos\theta - \sin\theta)^2$.

(b) Find all values of θ such that (i) $\sin^2 \theta - \sin \theta = 0, 0 \le \theta \le 2\pi$. (ii) $\sin^2 \theta - \sin \theta = 2, 0 \le \theta \le 2\pi$.

Question 6

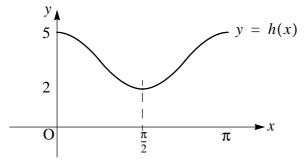
The figure below shows the graph of $f(x) = 2\sin\left(\frac{x}{2}\right)$.



- (a) Find a, b and c.
- (b) Solve for x, where $f(x) = \sqrt{3}, 0 \le x \le c$.

Question 7

Consider the graph of the function $h(x) = a\cos(bx) + c$:



Find the values *a*, *b* and *c*.

(a) State the range of $2\sin\theta$.

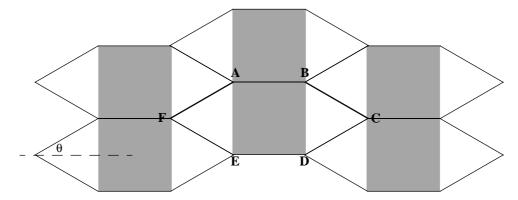
(b) Find (i) the smallest value of
$$\frac{1}{3+4^{\sin\theta}}$$
.
(ii) the largest value of $\frac{1}{3+4^{\sin\theta}}$.

Question 9

- (a) Find all values of x such that $2\cos(x) + \sin(2x) = 0, x \in [0, 2\pi]$.
- (b) How many solutions to $2\cos(x) + \sin(2x) = \cos x$ are there in the interval $[0, 2\pi]$.

Question 10

Part of a particular tile pattern, made up by joining hexagonal shaped tiles, is shown below.



The side lengths of every hexagon is x cm.

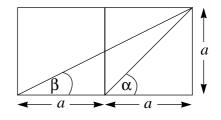
- (a) Find in terms of x and θ the length of [AE].
- (b) If the area of the shaded region in any one of the hexagons is 9 cm² and sin $\theta = \frac{1}{8}$, find the value of *x*.

Question 11

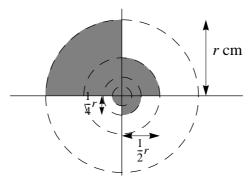
For the diagram shown alongside, the value

of
$$\sin(\alpha - \beta) = \frac{1}{\sqrt{k}}$$
, where $k \in \mathbb{Z}^+$.

Find the value of *k*.



The following diagram shows continually decreasing quarter circles, where each successive quarter circle has a radius half that of the previous one.



Let A_1 equal the area of the quarter circle of radius r, A_2 equal the area of the quarter circle of radius $\frac{1}{2}r$, A_3 equal the area of the quarter circle of radius $\frac{1}{4}r$ and so on.

Find (i) A_1 in terms of r. (a)

(ii)
$$A_2$$
 in terms of r

(ii) A_2 in terms of r. (iii) A_3 in terms of r.

(b) If
$$A_1 + A_2 + A_3 = \frac{525}{64}\pi$$
, find *r*.

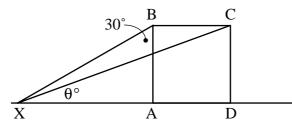
If quarter circles are drawn and shaded in indefinitely, find r if $\sum A_i = 27\pi$. (c)

Question 13

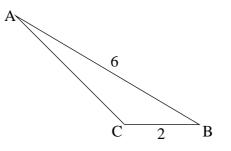
A pole of length b metres resting against a wall makes an angle of 60° with the ground. The end of the pole making contact with the ground starts to slip away from the wall until it comes to rest, 1 m from its initial position, where it now makes an angle of 30° with the ground. Find the value of *b*.

Question 14

The figure below shows a square ABCD. If $\angle XBA = 30^{\circ}$ and $\angle CXA = \theta^{\circ}$, find $\tan \theta^{\circ}$.

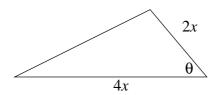


In the diagram below, $\cos B = \frac{3}{8}$, AB = 6 and BC = 2, AC = \sqrt{b} , find b.



Question 16

The area of the triangle shown is 27 sq. units. Given that $\sin \theta = \frac{3}{4}$, find x.



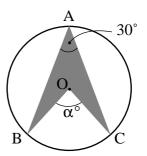
Question 17

A circular badge of radius 2 cm has the following design:

- (a) State the value of α .
- (b) Find (i) the length of the minor BC.(ii) the area of the minor sector OBC.
- (c) Find the area of the shaded region shown.

If $0^{\circ} \le x \le 90^{\circ}$, solve each of the following

- (a) $\cos x = \sin 36^\circ$.
- (b) $\cos x = \sin x$.
- (c) $\cos 2x = \sin x$.



- (a) If $\tan \theta = a$, express $\frac{4\sin \theta}{5\cos \theta \sin \theta}$ in terms of a.
- (b) **Hence** find the value of θ if $\frac{4\sin\theta}{5\cos\theta \sin\theta} = 1$, $0 < \theta < \frac{\pi}{2}$.

Question 20

Consider the triangle ABC:

- (a) Find x.
- (b) Find the area of $\triangle ABC$

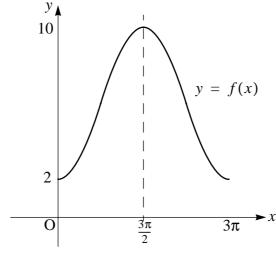
Question 21

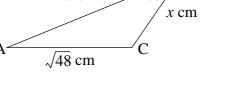
The segments [CA] and [CB] are tangents to the circle at the points A and B respectively. If the circle has a radius of 4 cm

- and $\angle AOB = \frac{2\pi}{3}$.
- (a) Find the length of [OC].
- (b) Find the area of the shaded region.

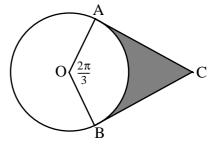
Question 22

The graph of $f(x) = a\cos(bx) + c$, $0 \le x \le \pi$ is shown below. Find the values *a*, *b* and *c*.



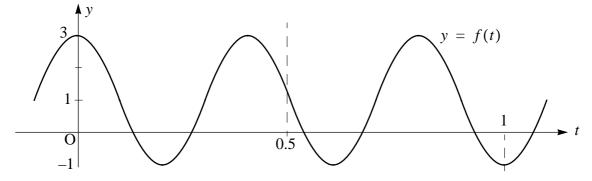


2x cm



в

(a) Part of the graph of the function defined by y = f(t) is shown below.



- (i) What is the period of f(t)?
- (ii) Given that $f(t) = a\cos(kt) + c$, find a, k and c.
- (b) What is the least positive value of x for which $\cos(2x) = \sqrt{3}\sin(2x)$?
- (c) Let $g(x) = m\cos(x) + n$, $n, m \in \mathbb{R}$ and m > 0. Write an expression for n in terms of m if g(x) < 0 for all real values of x.
- (d) Sketch the graph of $h :]-\pi,\pi[\mapsto \mathbb{R}$, where $h(x) = \tan\left(\frac{x}{2}\right) + 1$, clearly determining and labelling the *x*-intercepts.

(e) Find the sum of the solutions to $\cos\left(\frac{x}{2}\right) = \frac{1}{2}\sqrt{3}$, $x \in [0, 4\pi]$.

Question 24

Destructive interference generated by two out of tune violins results in the production of a sound intensity, I(t), given by the equation

$$I(t) = 30 + 4\cos\left(\frac{4\pi}{3}t\right) dB$$
 (decibels)

where *t* is the time in seconds after the violins begin to sound.

- (a) What is the intensity after 1 second?
- (b) What is the least intensity generated?
- (c) When does the intensity first reach 32 dB?
- (d) What time difference exists between successive measures of maximum intensity?

The rabbit population, N(t), over a ten year cycle in a small region of South Australia fluctuates according to the equation

 $N(t) = 950\cos(36t^\circ) + 3000, 0 \le t \le 10$

where *t* is measured in years.

- (a) Find the rabbit population after 2 and a half years.
- (b) What is the minimum number of rabbits in this region that is predicted by this model?
- (c) Sketch the graph of y = N(t), $0 \le t \le 10$.
- (d) For how long, over a 10 year cycle, will the rabbit population number at most 3475?

Question 26

Solve the equation for x, where $\sin 2x = \sqrt{3}\cos x$, $0 \le x \le \pi$.

Question 27

- (a) Expand $\sqrt{2}\cos\left(\theta \frac{\pi}{4}\right)$.
- (b) Solve $\cos^2\theta + \sin\theta\cos\theta = -(\cos\theta + \sin\theta), \ 0 \le \theta \le \pi$.

Question 28

If sin A = $\frac{\sqrt{2}}{4}$ and cos B = $\frac{\sqrt{3}}{4}$ where both A and B are acute angles, find

(a) (i) sin2A. (ii) cos2B.

(c) sin(A + B).

- (a) (i) If $T(x) = 6 (x 1)^2$, what is the maximum value of T(x)? (ii) Express $\sin^2 x + 2\cos x + 6$ in the form $a + b(\cos x - 1)^2$.
- (b) What is the maximum value of $\sin^2 x + 2\cos x + 6$?

- (a) Let $s = \sin\theta$. Show that the equation $15\sin\theta + \cos^2\theta = 8 + \sin^2\theta$ can be expressed in the form $2s^2 15s + 7 = 0$.
- (b) Hence solve $15\sin\theta + \cos^2\theta = 8 + \sin^2\theta$ for $\theta \in [0, 2\pi]$.

Question 31

Find {*x*| $4\sin^3 x + 4\sin^2 x - \sin x - 1 = 0, 0 \le x \le 2\pi$ }

Question 32

If $\sin A = 2\sin(\theta - A)$, find the values of a and b such that $\tan A = \frac{a\sin\theta}{1 + b\cos\theta}$

Question 33

(a)	Show that	(i)	$\cos 3\theta = 4\cos^3\theta - 3\cos\theta.$
		(ii)	$\sin\theta^\circ = \cos(90^\circ - \theta^\circ).$

(b) Noting that $2 \times 18 = 36$ and $3 \times 18 = 54 = 90 - 36$, find the exact value of $\sin 18^\circ$.

Question 34

Given that $u = \frac{1 + \sin \theta}{\cos \theta}$, prove that (a) $\sin \theta = \frac{u^2 - 1}{u^2 + 1}$.

(b) $\cos\theta = \frac{2u}{u^2 + 1}$

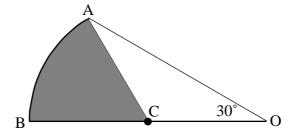
Question 35

Given that $\sin x \sin y = \frac{\sqrt{3}}{4}$ and $\cos x \cos y = \frac{\sqrt{3}}{4}$, find all real x and y that satisfy these equations simultaneously, where $0 \le x \le \pi$ and $0 \le y \le \pi$.

Given that $a \sec \theta = 1 + \tan \theta$ and $b \sec \theta = 1 - \tan \theta$, show that $a^2 + b^2 = k$ and hence state the value of k.

Question 37

A sector OAB of radius 4 cm is shown below, where the point C is the midpoint of [OB].

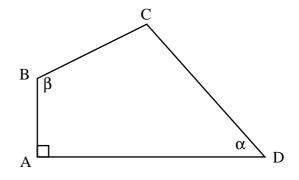


- (a) Find the area of the shaded region.
- (b) Where, along [OB], should the point C be placed so that [AC] divides the area of the sector OAB in two equal parts.

Question 38

In the figure shown, DC = a cm, BC = b cm, $\angle ABC = \beta$ and $\angle ADC = \alpha$.

If $AD = x \cos \alpha + y \sin \beta$, find x and y in terms of a and b.



Question 39

Point A is x metres due south of a vertical pole OP and is such that the angle of elevation of P from A is 60°. Point B is due east of the pole OP and makes an angle of elevation to P of 30°. The points O, A and B all lie on the same horizontal plane. A metal wire is attached from A to P and another wire is attached from B to P.

(a)	Find an expression in terms of x for	(i)	AP.
		(ii)	BP.
		(iii)	AB

(b) The sine of the angle between the two wires is $\frac{a\sqrt{b}}{c}$ where $a, b, c \in \mathbb{Z}^+$. Find a, b and c.

Consider the function $f(x) = 2\sin\left(x - \frac{\pi}{2}\right) + 1, \ 0 \le x \le \pi$.

(a) (i) Find the range of f. (ii) Sketch the graph of f.

(b) Find f^{-1} .

(c) Sketch the graph of f^{-1} .

- (a) (i) Sketch on the same set of axes the graphs of $f(x) = \operatorname{Arccos}(x)$ and $g(x) = \operatorname{Arcsin}(x)$.
 - (ii) Hence sketch the graph of h(x) = f(x) + g(x).
 - (iii) Deduce the value of $\operatorname{Arccos}(x) + \operatorname{Arcsin}(x)$ for $-1 \le x \le 1$.

(b) Find
$$\sin\left(\operatorname{Arccos}\left(\frac{4}{5}\right) + \operatorname{Arctan}\left(-\frac{4}{5}\right)\right)$$

MATRICES

Question 1

Let the matrix
$$A = \begin{bmatrix} -2 & 1 \\ 3 & 0 \end{bmatrix}$$
 define a 2 × 2 matrix.

- (a) Find (i) $|A^2|$. (ii) A^{-1} .
- (b) If $B = \begin{bmatrix} 4 & 3 \\ 1 & -2 \end{bmatrix}$, find the matrix X given that 2X + B = A.

Question 2

Given that
$$A = \begin{bmatrix} 2 & 4 \\ 3 & -1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & -2 \\ 3 & 2 \end{bmatrix}$
(a) find (i) AB .
(ii) $A^2B - A$.

(b) If
$$xA - yB = \begin{bmatrix} 5 & 6 \\ 9 & 0 \end{bmatrix}$$
 where $x, y \in \mathbb{R}$, find x and y.

Question 3

Consider the matrices $A = \begin{bmatrix} 2 & 5 \end{bmatrix}$, $B = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$ and $C = \begin{bmatrix} -1 & 0 \\ 2 & 4 \end{bmatrix}$. Find, where possible,

- (a) *AB*.
- (b) A + B.
- (c) *BC*.
- (d) *CB*.
- (e) *CA*.

Find *x* given that

(i)
$$\begin{bmatrix} x^2 & 7 \\ 4 & 6 \end{bmatrix} = \begin{bmatrix} 9 & 7 \\ 4 & x+3 \end{bmatrix}.$$

(ii)
$$\begin{bmatrix} x^2+6 & 7 \\ x+2 & 3 \end{bmatrix} = \begin{bmatrix} 5x & 7 \\ 4 & 3 \end{bmatrix}.$$

Question 5

(a) Find
$$\begin{bmatrix} 0 & -1 & 1 \\ 1 & 5 & -4 \\ 1 & 2 & -2 \end{bmatrix} \begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & -1 \\ 3 & 1 & -1 \end{bmatrix}.$$

(b) (i) Set up the system of simultaneous equations 2x + z = 53x + y - z = 4 in the form AX = B, 3x + y - z = 3

where
$$X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

(ii) **Hence** solve for x, y and z.

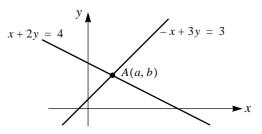
Question 6

If
$$\begin{bmatrix} 2x+8 & 4\\ 0.5x & y \end{bmatrix} = \begin{bmatrix} 3x-y & 4\\ 5 & y \end{bmatrix}$$
, find x and y.

Question 7

(a) Given that
$$A = \begin{bmatrix} -1 & 3 \\ 2 & 4 \end{bmatrix}$$
, find A^{-1} .

(b) Hence find the coordinates (a, b) of point A in the diagram shown below.



If
$$A = \begin{bmatrix} \cos^2\theta & -\cos\theta \\ \sin\theta & \sin^2\theta \end{bmatrix}$$
 and $B = \begin{bmatrix} \sin^2\theta & \cos\theta \\ -\sin\theta & \cos^2\theta \end{bmatrix}$, find

(a) (i)
$$A + B$$
.
(ii) $(A + B)^{-1}$.
(iii) $A - B$.

(b) For what values of
$$\theta$$
 where $0 < \theta < \pi$, does $A - B = \begin{bmatrix} 0 & \sqrt{2} \\ \sqrt{2} & 0 \end{bmatrix}$.

Question 9

Consider the function $T(x) = 3x^2 + 4x + I$, where $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.

(a) If
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
, find $T(A)$.

(b) (i) Find
$$(3A + I)(A + I)$$
.
(ii) **Hence** find $3A^2 - 4A + I$.

Question 10

Given that $A = \begin{bmatrix} x & 1 \\ 2 & x-1 \end{bmatrix}$, for what values of x will A be singular?

Question 11

(a) Given that
$$A = \begin{bmatrix} 3 & 2 \\ 7 & 4 \end{bmatrix}$$
, find
(i) $|A|$.
(ii) A^{-1} .

(b) **Hence** solve the system of simultaneous equations $\begin{aligned} &7x + 4y = 4\\ &3x + 2y = -2 \end{aligned}$

If
$$A = \begin{bmatrix} 0 & 3 \\ -1 & 1 \end{bmatrix}$$
, find scalars α , β and γ , where $\alpha \neq 0$, $\beta \neq 0$, $\gamma \neq 0$, for which
 $\alpha A^2 + \beta A + \gamma I = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$.

Question 13

(a) (i) Let
$$A = \begin{bmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$, find AB .

(ii) **Hence** find A^{-1} .

(b) Hence solve the system of simultaneous equations $\begin{array}{l} -x+y+z=3\\ x-y+z=4\\ x+y-z=5\end{array}$

Question 14

Find x if
$$|A| = 0$$
 and $A = \begin{bmatrix} x-1 & 1 & 2 \\ 2 & x-3 & 1 \\ -1 & 1 & x-2 \end{bmatrix}$.

(a) Find, in terms of
$$a, \Delta = \begin{vmatrix} 3 & 1 & 2 \\ 5 & 2 & 3 \\ 1 & 1 & (a-2) \end{vmatrix}$$
.

(b) Consider the system of equations

$$3x + y + 2z = 4$$

$$5x + 2y + 3z = 6$$

$$x + y + (a - 2)z = 0$$

- (i) Solve the system of equations when a = 3.
- (ii) For what values(s) of a will the system of equations have exactly one solution.

Consider the system of equations 3x + 2y - z = 1 x + y + z = 2 kx + 2y - z = 1

(a) Find the value of k for which the system of equations has more than one solution.

(b) Solve the system of equations for the value of k in part (a).

Question 17

(a) If
$$\Delta = \begin{vmatrix} 1 & 1 & 1 \\ 3 & -13 & p \\ 0 & p+3 & -1 \end{vmatrix}$$
, find

- (i) an expression for Δ in terms of *p*.
- (ii) the value(s) of p for which $\Delta = 0$.
- (b) For what values of p will the system of equations 3x 13y + pz = p + 1 have a unique (p+3)y - z = 0

solution?

(c) For each value of p for which a unique solution does not exist, determine whether a solution exists and if it does, find all solutions.

Question 18

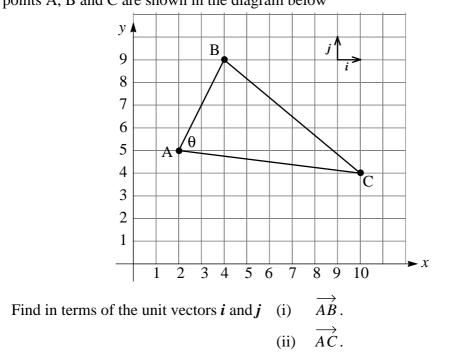
Consider the matrices
$$A = \begin{bmatrix} 1 & a & 2 \\ a & 1 & 1 \\ 2 & -2 & a+2 \end{bmatrix}$$
, $B = \begin{bmatrix} 5 \\ 1 \\ 8 \end{bmatrix}$ and $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$, $a \in \mathbb{R}$.

(a) Show that the equation AX = B has a unique solution when a is neither 0 nor -1.

(b) (i) If a = 0, find the particular solution for which x + y + z = 0.
(ii) If a = -1, show that the system of equations has no solution.

VECTORS

Question 1



The points A, B and C are shown in the diagram below

(b) (i) Find $\overrightarrow{AB} \bullet \overrightarrow{AC}$. (ii) Hence find $\cos^2\theta$.

Question 2

(a)

ABCD is a quadrilateral where P, Q and R are the midpoints of [AB], [BC] and [CD] respectively. If $\overrightarrow{AD} + \overrightarrow{BC} = k\overrightarrow{PR}$, where k is a positive integer, find k.

Given that
$$\boldsymbol{a} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \boldsymbol{b} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$$
 and $\boldsymbol{c} = \begin{pmatrix} 5 \\ 3 \end{pmatrix}$, find
(a) $\boldsymbol{a} + 2\boldsymbol{b} + \boldsymbol{c}$.
(b) $\boldsymbol{a} \bullet \boldsymbol{b}$.
(c) $\boldsymbol{a} - \frac{1}{2}(\boldsymbol{c} - \boldsymbol{b})$.

(c)
$$a - \frac{1}{3}(c - b)$$

(d)
$$|\boldsymbol{c}|$$
.

Consider the vector
$$\mathbf{r} = \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}$$
.
(a) Find (i) $\mathbf{r} \cdot \mathbf{r}$.
(ii) $\hat{\mathbf{r}}$.

(b) If
$$\boldsymbol{a} = \begin{pmatrix} x \\ 1 \\ y \end{pmatrix}$$
 and $\boldsymbol{b} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$, find x and y given that $\boldsymbol{r} = -4\boldsymbol{a} + 2\boldsymbol{b}$.

Question 5

If a = 2i - 6j + 3k and b = -i + 2j - 2k, find

- (a) (i) $|\boldsymbol{a}|$ (ii) $|\boldsymbol{b}|$.
- (b) |**b**-**a**|.

(c)
$$(a-b) \bullet (a+b)$$
.

Question 6

The vector
$$\boldsymbol{a} = \begin{pmatrix} 3 \\ 2 \\ 6 \end{pmatrix}$$
 is a linear combination of the vectors $\boldsymbol{x} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$, $\boldsymbol{y} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$ and $\boldsymbol{z} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$. That is, $\boldsymbol{a} = \alpha \boldsymbol{x} + \beta \boldsymbol{y} + \gamma \boldsymbol{z}$. Find α , β and γ .

Question 7

The vector
$$\boldsymbol{a} = \begin{pmatrix} \cos\theta \\ \sin\theta \\ 0.5 \end{pmatrix}$$
 makes an angle of 60° with the vector $\boldsymbol{b} = \begin{pmatrix} \sin\theta \\ \cos\theta \\ 0.5 \end{pmatrix}$. Find the value

of $sin 2\theta$.

If vectors
$$\boldsymbol{a} = \begin{pmatrix} x \\ 3 \\ -1 \end{pmatrix}$$
 and $\boldsymbol{b} = \begin{pmatrix} 2 \\ x^2 \\ 1 \end{pmatrix}$ are perpendicular, find x.

Question 9

Given that |a| = 4, |b| = 3 and that *a* is perpendicular to *b*, find

(a)
$$(a-b) \bullet (a+b)$$
.

(b)
$$(a+b) \bullet (a+b)$$
.

(c)
$$(a+b) \bullet (a+b) - (a-b) \bullet (a-b)$$
.

Question 10

(a) The straight line, l_1 , passes through the points (2, 3, -1) and (5, 6, 3). Write down the vector equation, r_1 , of this straight line.

(b) A second line is defined by the vector equation $\mathbf{r}_2 = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$, where μ is a real

number. If the angle between the two lines is θ , find the value of $\cos\theta$.

Question 11

The vector equation of line l_1 is given by $\mathbf{r}_1 = \begin{pmatrix} 4 \\ -3 \\ 2 \end{pmatrix} + t \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}, t \in \mathbb{R}.$

- (a) If the point P on r_1 corresponds to when t = 1, find
 - (i) the position vector of P.
 - (ii) how far P is from the origin O.

A second line, l_2 , is defined by the vector equation $\mathbf{r}_2 = \mathbf{i} + 2\mathbf{j} - 3\mathbf{k} + s(2\mathbf{i} - \mathbf{j} + 3\mathbf{k}), s \in \mathbb{R}$.

(b) If l_2 intersects l_1 when t = 1, find the value of s.

Consider the points A(0, -1, 5), B(1, 3, 3), C(5, 4, 0) and D(3, 0, 4).

(a) Find the vectors (i) \overrightarrow{AB} . (ii) \overrightarrow{BC} . (iii) \overrightarrow{DC} .

(b) Find the cosine of the angle between vector \overrightarrow{AB} and vector \overrightarrow{DC} .

- (c) Calculate $\overrightarrow{AB} \times \overrightarrow{BC}$.
- (d) (i) Find the Cartesian equation of the plane Π₁ containing the points A, B and C.
 (ii) Find a unit vector which is perpendicular to the plane Π₁.
- (e) A second plane, Π_2 , contains the points A, B and D. Find the Cartesian equation of the line where Π_2 intersects Π_1 .

Question 13

The angle between the vectors x and y is 120° where |x| = 3 and |y| = 2. If u = x - 2y and v = 2x + y, find

- (a) $\boldsymbol{u} \bullet \boldsymbol{v}$.
- (b) the cosine of the angle between u and v.

Question 14

The two planes 3x - 2y - z - 3 = 0 and 2x - y - 2z - 5 = 0 intersect along the line L.

Find the

- (a) point on L where z = 0.
- (b) vector equation of L.
- (c) Cartesian equation of L.

- (a) Find a unit vector perpendicular to both a = i 2j + 2k and b = 3i 6j + 2k.
- (b) Find the sine of the angle between *a* and *b*.

Question 16

If the vectors a, b and c are coplanar, where a = 2i - j + 3k, b = -i + j + k and $c = \alpha i - 2j + 2k$, $\alpha \in \mathbb{R}$, find α .

Question 17

- (a) Two vectors, $\mathbf{a} = 6\mathbf{i} 2\mathbf{j} + 3\mathbf{k}$ and $\mathbf{b} = \mathbf{i} + \alpha\mathbf{j} + \beta\mathbf{k}$ where $\alpha, \beta \in \mathbb{R}$ are parallel. Find the values of α and β .
- (b) Find the area of the triangle formed by the points A(-3, 2, 4), B(1, -1, 2) and C(2, 1, 5).

Question 18

Find the equation of the plane which passes through the point A(3, 4, -1) and which is normal to the vector $\mathbf{n} = -2\mathbf{i} + \mathbf{j} - 3\mathbf{k}$.

Question 19

Consider the planes $\begin{aligned} \Pi_1 : \boldsymbol{r} \bullet \boldsymbol{n}_1 &= 4 \\ \Pi_2 : \boldsymbol{r} \bullet \boldsymbol{n}_2 &= 3 \end{aligned}, \text{ where } \boldsymbol{n}_1 &= 2\boldsymbol{i} + \boldsymbol{j} - 3\boldsymbol{k} \text{ and } \boldsymbol{n}_2 &= \boldsymbol{i} - 2\boldsymbol{j} + \boldsymbol{k} . \end{aligned}$

Find the equation of the plane that is perpendicular to both Π_1 and Π_2 and that also passes through the point P(2, 1, -2). Give your **answer in normal vector form**.

Question 20

Two vectors, \mathbf{n}_1 and \mathbf{n}_2 are perpendicular to the planes $\Pi_1 : -x + 2y + z + 3 = 0$ and $\Pi_2 : 3x + 4y + 2 = 0$ respectively.

- (a) Find two vectors \hat{n}_1 and \hat{n}_2 .
- (b) **Hence** find the cosine of the acute angle between the planes Π_1 and Π_2 .

Mathematics HL - Paper One Style Questions

Question 21

- (a) Find $\begin{vmatrix} -1 & -2 & 1 \\ -3 & -1 & 4 \\ 1 & 1 & 6 \end{vmatrix}$.
- (b) The points A(1, 2, -1), B(-2, 1, 3) and C(2, 3, 5) lie on the plane Π_1 . Find the vectors
 - (i) \overrightarrow{AB} . (ii) \overrightarrow{AC} .
- (c) Hence find the equation of Π_1 .

Question 22

The plane 2x + 3y - z + 4 = 0 and the line $\frac{x-1}{2} = \frac{y+2}{3} = \frac{z-1}{-2}$ intersects at the point A. Find the coordinates of A.

Question 23

The line L passing through the points A(2, 5, 4) and B(4, 6, 2) intersects the plane 2x - 3y - 4z = 12. The inclination of L to this plane is $\theta = \arcsin\left(\frac{a}{\sqrt{b}}\right)$, find *a* and *b*, where *a* and *b* are smallest positive integers possible.

Question 24

- (a) Find the vector equation of the plane containing the vectors $\begin{pmatrix} 4 \\ 3 \\ 3 \end{pmatrix}$ and $\begin{pmatrix} 5 \\ 2 \\ 1 \end{pmatrix}$ and which also includes the point (3, 4, 2).
- (b) Find the Cartesian equation of the plane in (a).

STATISTICS AND PROBABILITY

Question 1

A random variable X is distributed normally with a mean of 50 and a variance of 16.

- (a) Find P(X > 50).
- (b) Find (i) the value of X that is 1.65σ above the mean. (ii) the standardised normal value corresponding to X = 64.

Question 2

A random variable X is distributed normally with a mean of 82 and a standard deviation of 6. Given that P(Z < 1.6) = 0.945, correct to 3 decimal places, find P(X > 91.6).

Question 3

The lengths of a particular type of lizard is found to be normally distributed with a mean length of 15 cm and a standard deviation of 2 cm. If the random variable X denotes the lengths of these lizards and P(Z > 1) = a, where Z is the normal standard random variable, find

(a) the probability of a lizard being greater than 17 cm long.

(b) P(|X| < 17).

Question 4

The random variable *X* is normally distributed with a mean of 82 and a standard deviation of 4. Let Z be the standard normal random variable. Use the result that P(Z < 1.5) = 0.93, correct to two decimal places, to find

- (a) P(X > 88) (to 2 decimal places).
- (b) P(76 < X < 88) (to 2 decimal places).
- (c) P(X > 76 | X < 88).

The length, in minutes, of telephone calls at a small office was recorded over a one month period. The results are shown in the table below.

Length of call (minutes)	Number of calls
$0 < t \le 2$	40
$2 < t \le 4$	60
$4 < t \le 6$	40
$6 < t \le 8$	30
$8 < t \le 10$	20
$10 < t \le 12$	10
Total	200

- (a) Construct a cumulative frequency graph.
- (b) Find (i) the mean length of calls.
 - (ii) the mode of the length of calls.
 - (iii) the median.

Question 6

For the data set; x - 4, x + 4, x - 6, x - 6, x + 6, x + 12, find

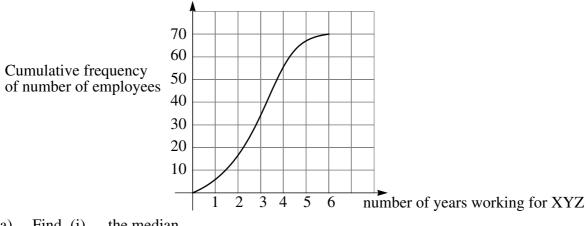
- (a) the median.
- (b) the mean.
- (c) the variance, σ^2 .

Question 7

A carton contains 12 eggs of which 3 are known to be bad. If 2 eggs are randomly selected, what is the probability that

- (a) one is bad?
- (b) both are bad?

The following cumulative frequency graph shows the number of years that employees remain at the XYZ company.



- (a) Find (i) the median.
 - (ii) the upper quartile.
 - (iii) interquartile range.
- (b) The probability that an employee serves no more than 4 years at the XYZ company.

Question 9

A regular tetrahedron with its faces numbered 1 to 4 has the following probability distribution.

Score (X)	1	2	3	4
Probability	$\frac{3}{20}$	$\frac{1}{10}$	x	$\frac{1}{5}$

Where the random variable X denotes the number that the tetrahedron lands on, i.e., the score.

- Find the value of *x*. (a)
- (b) Find (i) E(*X*). (ii) Var(X).
- The tetrahedron is rolled twice, what is the probability that **the sum** of the scores is (c) 2. (i)
 - (ii) 4.

The speed of Gab's tennis serves are normally distributed with a mean speed of 102 km h^{-1} . The probability that Gab's serve reaches a speed in excess of 114 km h^{-1} is 0.08.

- (a) Find the probability that Gab's next serve is less than 114 km h^{-1} .
- (b) Gab records a serve reaching a speed of $a \text{ km h}^{-1}$. If there is a chance of 0.08 that Gab's serve reaches a speed of under $a \text{ km h}^{-1}$, find the value of a.
- (c) During a training session Gab practices her serves 150 times. On how many occasions will you expect Gab's serve reach a speed of between 102 km h⁻¹ and 114 km h⁻¹?

Question 11

A game is such that there is a $\frac{2}{5}$ chance of winning \$10.00. To play the game a player must pay \$5.00. Joe decides to play three games in a row.

Find the probability that after his three games Joe

- (a) wins \$30.00.
- (b) makes a profit of \$5.00.

Question 12

Two boxes containing different coloured balls are such that the probability of obtaining a yellow ball from box A is *x* and obtaining a yellow ball from box B is $\frac{1}{4}$. A box is first selected at random and then one ball is selected from that box.

- (a) A box is first selected at random and then one ball is selected from that box. Find, in terms of *x*, the probability of obtaining a yellow ball.
- (b) After selecting a ball it is placed back into the box it came from and the process, as described in (a), is repeated for a second time.
 - (i) Find the probability, in terms of x, that if two yellow balls are observed they both came from box A.

(ii) Show that if the probability in part (i) is
$$\frac{2}{3}$$
 then $8x^2 - 8x - 1 = 0$.

Students at Leegong Grammar School are enrolled in either physics or mathematics or both. The probability that a student is enrolled in physics given that they are enrolled in mathematics is $\frac{1}{3}$ while the probability that a student is enrolled in mathematics given that they are enrolled in physics is $\frac{1}{4}$. The probability that a student is enrolled in both mathematics and physics is *x*.

- (a) Find, in terms of *x*, the probability that a student is enrolled in
 - (i) mathematics.
 - (ii) physics.
- (b) Find the probability that a student selected at random is enrolled in mathematics only.
- (c) If three such students are randomly selected, what is the probability that at most one of them is enrolled is mathematics only?

Question 14

The random variable X has the following binomial distribution, X~B(4,p). If $P(X = 3) = \frac{4}{3}p^3$, p > 0, find

- •
- (a) P(X = 2).
- (b) (i) E(X). (ii) standard deviation of $\sqrt{2}X$.

Question 15

How many permutations are there of the word RETARD if

- (a) they start with RE.
- (b) they do not start with RE.

Question 16

Show that
$$\binom{n}{r} = \binom{n-1}{r} + \binom{n-1}{r-1}$$
.

The probabilities that persons A, B and C select the correct answer to the same question are 0.3, 0.5 and 0.4 respectively. Find the probability that

- (a) they all answer correctly.
- (b) none of A, B and C answer correctly.
- (c) only one person answers correctly.
- (d) at least one answers correctly.
- (e) given that only one answered correctly, it was A.

Question 18

A fair coin is tossed five times.

- (a) Find the probability of observing
 - (i) exactly one tail.
 - (ii) at least four tails.
 - (iii) at least one tail.
- (b) Find the expected number of tails observed.

Question 19

If the random variable X has a binomial distribution with mean 8, variance $\frac{8}{3}$ and is such that $P(X = 1) = \frac{a}{3^b}$, find the smallest values of *a* and *b* where $a, b \in \mathbb{Z}^+$.

Question 20

The average number of people arriving at a funpark is λ per minute. Assuming that the number of people, *X*, arriving at the funpark is a random variable that follows a Poisson distribution and

is such that P(X = 2) = 3P(X = 1), find *a* and *b* if $P(X = 2 | X \ge 1) = \frac{a}{e^b - 1}$.

Question 21

If $X \sim \text{Po}(\lambda)$, show that $P(X = r + 1) = \frac{\lambda}{r+1}P(X = r), r = 0, 1, 2...$

A radioactive source emits particles at an average rate of one every 10 minutes. The probability that in one hour there are at most 2 particles emitted is ae^{-b} , where *a* and *b* are positive integers. Find *a* and *b*.

Question 23

Noriko tosses *n* identical fair coins, where n > 2. Find the probability that all of the coins or all but one of them will fall with the same face up.

Question 24

If
$$P(A) = \frac{3}{4}$$
, $P(B) = \frac{1}{2}$ and $P(A \cup B) = \frac{7}{8}$, find

- (a) $P(A \cap B)$.
- (b) $P(A' \cap B)$.

(c)
$$P(A'|B')$$
.

Question 25

The probability density function of the continuous random variable X is given by

$$f(x) = \begin{cases} k \sin x, \ 0 \le x \le \pi \\ 0, & \text{otherwise} \end{cases}.$$

- (a) Find the value of *k*.
- (b) Sketch the probability density function, f(x).

(c) Find (i)
$$P\left(0 < X < \frac{\pi}{4}\right)$$
.
(ii) $P\left(X > \frac{2\pi}{3}\right)$.

- (d) Find E(X).
- (e) Find the median of *X*.

The probability density function of the random variable X is given by

$$f(x) = \begin{cases} \frac{k}{1+x^2}, \ 0 \le x \le 1\\ 0, & \text{otherwise} \end{cases}$$

(a) Find the value of the constant *k*.

(b) Find
$$P\left(0 < X < \frac{1}{\sqrt{3}}\right)$$
.

- (c) Given that $E(X) = \frac{1}{\pi} \ln(b)$, find the value of b.
- (d) (i) Find the cumulative distribution function, F(x).
 - (ii) Sketch the graph of F(x).
 - (iii) The median of X is $\tan\left(\frac{\pi}{c}\right)$, find the value of c.

Question 27

The probability density function of the random variable X is given by

$$f(x) = \begin{cases} \frac{1}{(1+x)^2}, & x \ge 0\\ 0, & \text{otherwise} \end{cases}$$

- (a) (i) Find the cdf, F(x).
 (ii) Sketch the graph of F(x).
- (b) Find an expression for the q-quantile, c_q .
- (c) Hence, find(i) the median.(ii) the interquartile range.
 - (iii) the 95th percentile.

Question 28

Given that
$$X \sim B\left(3, \frac{2}{3}\right)$$
 and $Y \sim B\left(4, \frac{1}{3}\right)$, find $P(X + Y = 2)$.

CALCULUS

Question 1

Find the equation of the tangent to the curve $y = 2\ln(x+1)$ at the point where x = 0.

Question 2

(a) Find
$$f'(1)$$
 for (i) $f(x) = \sqrt{x^2 + 3}$.
(ii) $f(x) = e^{\ln(x^2)}$.

(b) Find f''(1) if $f(x) = x(x+1)^{\frac{3}{2}}$.

Question 3

Use first principles to find the derivative of $f(x) = x^3 + 1$.

Question 4

Let $y = x \tan(x)$.

(a) Evaluate
$$\frac{dy}{dx}$$
 when $x = \frac{\pi}{6}$.

(b) Find the equation of the tangent to $y = x \tan(x)$ when $x = \frac{\pi}{4}$.

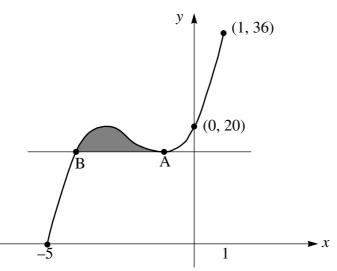
Question 5

The tangent to the curve $y = x^2 + 2$ has equation y = -4x + a. Find the value of a.

Question 6

Find the derivative of (i) $f(x) = \frac{\ln(x)}{x}$. (ii) $g(x) = \sin(\cos x)$. (iii) $h(x) = \left(\frac{1+x}{1-x}\right)^2$.

Consider the graph of $f : [-5, 1] \mapsto \mathbb{R}$, where $f(x) = x^3 + 6x^2 + 9x + 20$.



- (a) (i) Find f'(x).
 (ii) Find the two values of x where the tangent to the graph of f(x) is horizontal.
- (b) (i) Expand $(x + 1)^2(x + 4)$.
 - (ii) Find where the tangent line to f(x) at A extends to meet at B.
 - (iii) Find the area of the shaded region shown.

Question 8

Find (a) $\int_{1}^{2} (4x^3 - 3) dx$.

(b)
$$\int_0^1 \left(e^{2x} + \frac{1}{x+1} \right) dx$$

Question 9

The slope at any point (x, y) on a curve *C* is given by $\frac{dy}{dx} = 3kx^2 + 2x - 2$, $k \in \mathbb{R}$. The area enclosed by *C*, the *x*-axis and the lines x = 0 and x = 1 is 2 sq. units. If the curve passes through the point (1, 3), find the value of *k*.

Mathematics HL - Paper One Style Questions

Question 10

(a) Show that
$$\int_{a}^{2a} \sqrt{1 + \frac{x}{a}} dx = \frac{2}{3}a(3\sqrt{3} - 2\sqrt{2}).$$

(b) (i) Find the derivative of
$$f(x) = 2ax \sqrt{\frac{a+x}{a}}$$
.

(ii) **Hence** find
$$\int_{a}^{2a} x \sqrt{\frac{a}{a+x}} dx$$
.

Question 11

Consider the integrals $A_n = \int_0^{\frac{\pi}{2}} x^n \cos^2 x dx$ and $B_n = \int_0^{\frac{\pi}{2}} x^n \sin^2 x dx$.

- (a) Evaluate $A_2 + B_2$.
- (b) (i) Differentiate $x \sin 2x$. (ii) **Hence** evaluate $A_1 - B_1$.

Question 12

Consider the integral $I_n = \int_0^1 \frac{t^n}{(1+t)^n} dt$, $n \in \mathbb{Z}^+$. (a) (i) Show that $\frac{t}{t+1} = 1 - \frac{1}{t+1}$. (ii) Evaluate I_1 .

(b) (i) Differentiate
$$\ln(t^2 + 2t + 1)$$
.
(ii) Show that $\frac{t^2}{t^2} = 1 - \frac{2t+1}{2t+1}$

(ii) Show that $\frac{1}{(t+1)^2} = 1 - \frac{1}{(t+1)^2}$. (iii) **Hence** evaluate I_2 .

Question 13

(a) Evaluate
$$\int_{2}^{4} \frac{x^3 - 4x^2 + x}{x^2} dx$$
.

(b) Evaluate
$$\int_0^{\frac{\pi}{4}} (\sin x + \cos x)^2 dx.$$

Given that
$$\int_0^a f(t)dt = 5$$
 and $\int_0^a g(t)dt = -2$, find

(a) (i)
$$\int_{0}^{a} (f(t) - g(t)) dt$$
.
(ii) $\int_{0}^{a} (3f(t) + 1) dt$.

(b) the value of k so that
$$\int_0^a (k+2g(t))dt = 4$$
.

Question 15

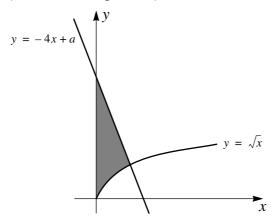
An object moving in a straight line has its displacement from an origin, O, described by the displacement equation $s(t) = \frac{1}{t^2} - \frac{2}{t} + 5$, t > 0.

(a)	Find the object's (i)	position after 1 second.
	(ii)	speed after 2 seconds.

(b) When will the object first be stationary after it starts its motion?

Question 16

A normal to the graph of $y = \sqrt{x}$ has equation $y = -4x + a, a \in \mathbb{R}$.



- (a) Find *a*.
- (b) Find the area of the shaded region shown in the diagram above.

A particle is moving along the x-axis in such a way that its displacement from the origin, O, at time t is given by the equation

$$x(t) = 2t + \sin(2t), t \ge 0.$$

(a) Find the particle's initial(i) velocity.(ii) acceleration.

(b) Find the value of *t* when the particle is stationary for the first time.

Question 18

Given that $f''(x) = -6x + 4\sin(x)$, f(0) = 1, and f'(0) = 2, find f(1).

Question 19

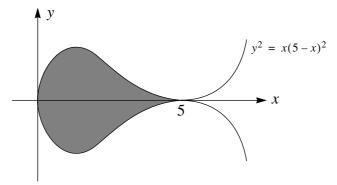
An object starts from rest and for the first minute has an acceleration given by

$$a(t) = \left(k - \frac{1}{10}t\right) \operatorname{m} \operatorname{s}^{-1}, t \ge 0, k \in \mathbb{R}.$$

- (a) After one minute it has a velocity of 22 m s⁻¹. Find the value of k.
- (b) (i) When will the object next be stationary?(ii) What is the object's displacement after the first minute of motion?

Question 20

(a) The area enclosed by the loop of the curve $y^2 = x(5-x)^2$ is shown by the shaded region in the diagram below. Find this area.

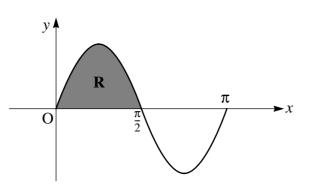


(b) The area of the shaded region shown is rotated about the *x*-axis, find the volume of the solid formed.

- (a) Given that $f(x) = x^3 2x^2 4x$, find f''(x).
- (b) (i) Find the x-coordinate of the stationary points of f(x).
 - (ii) Identify the points in (i) as either a local maximum or a local minimum, giving a clear reason for your choice.
- (c) Find the *x*-coordinate(s) of the point(s) of inflexion of f(x).

Question 22

Consider the shaded region, **R**, enclosed by part of the curve $y = \sin 2x$ and the *x*-axis over the interval $0 \le x \le \frac{\pi}{2}$.

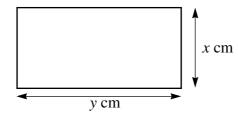


(a) Find the area of **R**.

(b) If the region \mathbf{R} is rotated about the *x*-axis, find the volume of the solid generated.

Question 23

The rectangle of area A cm^2 and dimensions *x* cm by *y* cm has a constant perimeter of 20 cm.

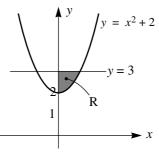


(a) Show that (i)
$$y = 10 - x$$
.
(ii) $A = 10x - x^2$.

(b) (i) Find $\frac{dA}{dx}$

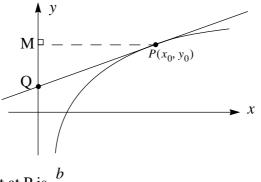
(ii) Hence find the maximum area and justify your answer.

The area of the shaded region, R, is rotated about the *x*-axis. Find the volume of the solid generated.



Question 25

P is a point on the curve with equation $y = b \ln\left(\frac{x}{a}\right)$, x > 0 and where *a* and *b* are positive real constants. M is the foot of the perpendicular from P to the *y*-axis. The tangent at P cuts the *y*-axis at Q.

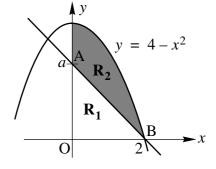


- (a) Show that the gradient at P is $\frac{b}{x_0}$.
- (b) Find the equation of the tangent at P.
- (c) Show that MP is constant.

Question 26

In the diagram shown, R_1 represents the region enclosed by the triangle OAB and R_2 represents the shaded region enclosed by the curve $y = 4 - x^2$, the y-axis and the line \overleftarrow{AB} .

- (a) Find, in terms of a, the area of R_1 .
- (b) Given that the area of R₁ is equal to the area of R₂, find the value of a.



The position of a particle along a straight line at time *t* is given by

 $x(t) = a\sin t - at\cos t, a \in \mathbb{R}^+.$

(a) Find the acceleration of the object when (i) t = 0. (ii) $t = \pi$.

(b) If the particle experiences a zero acceleration at time t = a, where $a \neq \frac{2n+1}{2}\pi$, $n \in \mathbb{Z}^+$, show that $\tan(a) + a = 0$.

Question 28

(a) If
$$f(x) = x^3 \cos(2x)$$
, find (i) $f'(x)$.
(ii) $f''(x)$.

(b) If
$$g(x) = \frac{e^{(3x+1)}}{2x+1}$$
, find $g'(x)$.

Question 29

The functions f(x) and g(x) are both differentiable at x = 0. Given that f(0) = f'(0) = -2, f''(0) = 4 and that $g(x) = [f(x)]^3$, find

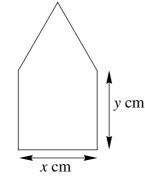
- (a) g'(0).
- (b) g''(0).

Question 30

A scale model of the coastlines of two islands, C₁ and C₂, are approximated by the curves $y_1 = x^2 - 6x + 15$ and $y_2 = -(x - 3)(x - 5)$ for $0 \le x \le 5$ respectively.

- (a) Sketch both coastlines on the same set of *xy*-axes.
- (b) A rope, parallel to the y-axis is to run from C_1 to C_2 . What is the length of the shortest rope needed (for this scale model).

A window consists of a rectangular base surmounted by an aquilateral triangle as shown below.



The intensity of light, I units, passing through this window is proportional to its surface area, A m^2 . The perimeter of the window is fixed at 12 m.

(a) Show that
$$y = 6 - \frac{3}{2}x$$
.

(b) Find the dimensions of the window that will allow the maximum intensity.

Question 32

(a) If
$$h(x) = \sin^2(\sqrt{x})$$
, find $h'(1)$.

(b) If
$$e^{-a} = \frac{1}{2}$$
, find $f'(a)$ given that $f(t) = \arcsin(e^{-t})$.

Question 33

Find the equation of the tangent to the curve with equation $y^3 = 2xy - x^2$ at the point (1, 1).

Question 34

Find the equation of the normal to the curve with equation $y \sin y = x \sin x$ at the point (π, π) .

Question 35

- (a) On the same set of axes, sketch the curves $y = 2 x^2$ and y = |x|.
- (b) Find the area of the region enclosed by both curves.
- (c) The region in part (b) is now rotated about the *y*-axis. Find the volume of the solid of revolution formed.

© IBID Press

An object whose displacement from an origin O is *s* metres, moves in a straight line. The object's acceleration, $a \text{ ms}^{-2}$, is given by $a = \frac{s^2}{s+1}$.

- (a) (i) Using the fact that $a = \frac{dv}{dt}$, show that $a = v \cdot \frac{dv}{ds}$, where v is the object's velocity.
 - (ii) Hence find an expression for v^2 in terms of *s* given that s = 0 when v = 2.
- (b) Given that v > 0 and that $v = \sqrt{k + \ln(2)}$ when s = 1, find the value of k.

Question 37

A curve C is defined implicitly by the equation $e^{\sin y} = \sin x + y^2$.

- (a) Find the equation of the tangent to C at the point where y = 0 and $0 < x < \pi$.
- (b) Find the equation of the normal to C at the point where y = 0 and $0 < x < \pi$.

Question 38

The function g is defined by $g(x) = (\log_2 x)^2 - x^2$, x > 0. If g''(a) = 0 has as its solution $(a \ln 2)^2 + (\ln a) = b$, find the value of b.

Question 39

Consider the curve with equation $y = \log_2 x$.

(a) Find the equation of the tangent at the point where

(i)
$$x = \frac{1}{2}$$
.
(ii) the slope is $\frac{1}{\ln 2}$

(b) If
$$\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = \frac{k}{x^2}$$
, find the value of k.

(a) Find
$$\int_{1}^{e} \frac{1+\ln x}{x} dx$$
.

(b) By using the substitution $u = \sqrt{x}$, find $\int_0^4 \frac{\sqrt{x}}{1+x} dx$.

Question 41

Find the value of (a) $\int_{-1}^{1} |x^3 - 1| dx$

1)
$$\int_{-1}^{-1} |x^3 - 1| dx$$
.

(b)
$$\int_{-1}^{2} |x^3 - 1| dx$$

Question 42

Evaluate $\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{\cos x}{\sqrt{\sin x}} dx$.

Question 43

(a) If
$$2\sin\theta = x$$
, find an expression for $\cos\theta$, $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$.

(b) Find (i)
$$\int \sqrt{4 - x^2} dx$$
, $|x| \le 2$.
(ii) $\int x \sqrt{4 - x^2} dx$, $|x| \le 2$.

Question 44

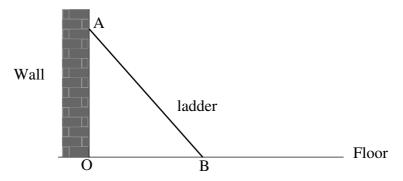
The function g is defined by $g(x) = xe^{-x}$.

- (a) Find (i) the stationary point of g.(ii) the point of inflection of g.
- (b) Sketch the curve of *g*.
- (c) Determine the values of k for which the equation $k = xe^{-x}$ has
 - (i) two real roots.
 - (ii) one real root.
 - (iii) no real roots.

The volume of a cube is increasing at 20 cm³s⁻¹. At what rate are the lengths of the edges of the cube increasing when its volume is 8000 cm³.

Question 46

A ladder [AB], 16 m long, is leaning against a vertical wall. The end resting on a horizontal floor is sliding away from the wall at a rate of $\sqrt{3}$ m min⁻¹.



- (a) If OA = y m and OB = x m, find an equation connecting x and y.
- (b) Find the rate at which point A is moving toward the floor when point B is 8 m from the wall.

Question 47

A particle moving along a straight line from a fixed point O at time *t* seconds has its velocity, $v \text{ ms}^{-1}$, given by

$$v(t) = 4te^{-\frac{t}{2}}, t \ge 0.$$

- (a) (i) Find the maximum velocity of this particle and justify that this is the maximum velocity.
 - (ii) Find the particle's minimum acceleration.
- (b) Find the distance travelled by the particle after of being in motion for 2 seconds.

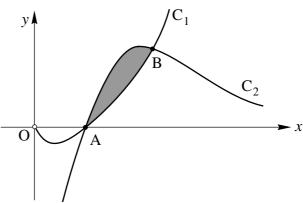
Question 48

(a) The function
$$g(x) = \frac{\arccos(x)}{f(x)}$$
, where $f\left(\frac{1}{2}\right) = 1$, $f'\left(\frac{1}{2}\right) = \frac{\sqrt{3}}{\pi}$. Find $g'\left(\frac{1}{2}\right)$.

(b) Find
$$h'\left(\frac{\pi}{2}\right)$$
 given that $h(x) = \arctan(e^{\cos x})$.

(a) Find (i) $\int \frac{\ln x}{x} dx$. (ii) $\int x \ln x dx$.

Parts of the graphs of $f(x) = \frac{9 \ln x}{x}$, x > 0 and $g(x) = x \ln x$, x > 0 are shown below.



- (b) (i) Identify which of f or g correspond to C_1 and which of f or g correspond to C_2 .
 - (ii) Find the coordinates of A and B.
 - (iii) Find the area of the shaded region show above.

Question 50

Find the particular solution to the differential equation $xy\frac{dy}{dx} = 1 - x^2$ given that y(1) = -1.

Question 51

Find the expression for y in terms of x given that $2\frac{dy}{dx} = \frac{y}{1+x^2}$, y(0) = 1.

Question 52

- (a) Simplify $\frac{1}{y-1} \frac{1}{y}$.
- (b) Find an expression for y in terms of x given that x and y satisfy the differential equation $x\frac{dy}{dx} + y = y^2$, y(1) = 2 and x > 0 and y > 1.
- (c) Sketch the graph of the solution curve in (b).

During a chemical reaction, the amount, R kg, of chemical formed at time t hours is modelled by the differential equation

$$\frac{dR}{dt} = 4 - \frac{R}{15}.$$

Initially there are 10 kg of the chemical in the solution.

- (a) Find an expression for *R* in terms of *t*.
- (b) How long will it take for 20 kg of the chemical to form?

ALGEBRA

1.	(a)	(i)	3	(ii)	50		(b)	798					
2.	(a)	(i)	3	(ii)	5		(b)	<i>a</i> =	$\frac{5}{2}, b =$	= 3 ¹⁰			
3.	(a)	$u_1 =$	= -8, 1	$u_2 = -$	–17, <i>u</i>	a = -	-26	(b)	-485				
4. 5.	(a)	-	(b)	-	(c)	-		0.1					
6.					(c)				2	(e)	$2\sqrt{2}$		
7.	(a)	(i)	7.5	(ii)	1	(b)	$\frac{1\pm 2}{2}$	/13					
8.					- 1) (ii)			or <i>x</i> >	• 5				
	(c)	$4 + \frac{1}{2}$	$\frac{1}{2}\sqrt{6}$										
9.	(a)	(i)	-1 oi	r – 1 ±	$=\sqrt{2}$		(b)	e ^{−1} , e	g−1±.	/2			
10.	(a)	(i)	$x^2 +$	(1 + a)	a) $x + a$	a							
11.	(b) (a)	(i) 2	1, <i>e</i> (b)	(i)	(ii) 45	0, 1 (ii)	225						
					- 4 -)					
				L									
13.	<i>a</i> = 1	, <i>b</i> = 1	11 and	c = -	$\frac{1}{2}$ [or	$a = \frac{1}{2}$, <i>b</i> =	12, <i>c</i> =	$=\frac{1}{2}$ is	f <i>S</i> ₁₂	$= \frac{1}{2} \times 2^{12} - \frac{1}{2}]$		
14.	<i>r</i> =	$\frac{-1+}{2}$	$\sqrt{5}$										
15.	(a)	$u_1 =$	= <i>p</i> +	q - 1		(b)	S_{p+q}	$_q = \frac{1}{2}$	(<i>p</i> + <i>q</i>	q)(p +	- <i>q</i> – 1)		
16.	(a)	-2, 1		(b)	e, e ⁻¹	2	(c)	0					
17.	(a)	-2a	$^{2} + 5a$	<i>i</i> + 3		(b)	(i)	3	(ii)	1			
18.	(i)	$\frac{1}{2}(8 \cdot$	+ a)		(ii)	50		(iii)	$\frac{9}{8}$				
19.	(a)	<i>a</i> =	$\frac{b^2}{b-1}$, <i>b</i> > 1		(b)	1						
20.	<i>x</i> =	$\frac{13}{4}$, y	$=\frac{7}{4}$										
22.	(a)	144	(b)	<i>x</i> = 1	8, y =	8	(c)	(i)	$\frac{2}{3}$	(ii)	54		
23.	α =	32, β	= 2	or α	= 2, [3 = 3	2						
24.	. ,	120			(i)	3	(ii)	5	(c)	(i)	$u_r = 2r + 1$	(ii)	41
25.	(1)	a = 1	. b = -	_1									
26			, 0	1									
26. 27.	$\begin{array}{l} \text{(a)} \\ \text{(b)} \\ x = \end{array}$	2			5								

28. (a)
$$\frac{12}{65}$$
 (b) $xy = 1$
29. 1, 2
31. $x < \log_2 3$
32. $2^n \cdot \frac{(2n)!}{(n!)^2}$
33. (b) 8th, 9th and 10th terms
34. $3 + i, -1$
35. $a = 2, b = 1, c = \sqrt{3}$
36. $z = 1 \cdot e^{\frac{2\pi}{3}i}$
37. $a = 0, b = 0$
39. (a) $m = -2, n = 1.5$ (b) $z = \frac{5}{2} \cdot e^{-\arctan(\frac{3}{4})i}$
40. (a) (i) $|w| = 2, \operatorname{Arg}(w) = \frac{2\pi}{3}$ (ii) $|z| = \sqrt{2}, \operatorname{Arg}(z) = -\frac{\pi}{4}$
(iii) $|wz| = 2\sqrt{2}, \operatorname{Arg}(wz) = \frac{5\pi}{12}$
(b) (i) $wz = (\sqrt{3} - 1) + (\sqrt{3} + 1)i$ (ii) $\frac{1}{4}(\sqrt{6} + \sqrt{2})$
41. $a = 4, b = -5$
42. 2
43. (a) (i) -16 (ii) see soln. (b) 4
(c) $0, \sqrt{2}(1 + i), \sqrt{2}(-1 + i), -\sqrt{2}(1 + i), \sqrt{2}(1 - i)$
44. $3 - 2i, -3 + 2i$
45. $4\sqrt{2} \cdot e^{\frac{\pi}{12}i}, 4\sqrt{2} \cdot e^{\frac{7\pi}{12}i}, 4\sqrt{2} \cdot e^{-\frac{5\pi}{12}i}, e^{-\frac{11\pi}{12}i}$
46. (a) $a = 0, b = 1$ (b) $a = \frac{1}{\sqrt{2}}, b = \frac{1}{2}$ or $a = -\frac{1}{\sqrt{2}}, b = -\frac{1}{\sqrt{2}}$
(c) $a = 0, b = -1; a = \frac{\sqrt{3}}{2}, b = \frac{1}{2}; a = -\frac{\sqrt{3}}{2}, b = \frac{1}{2}$

FUNCTIONS AND EQUATIONS

(a) (i) 1 (ii) $\frac{1}{3}$ (iii) $\frac{1}{6}\sqrt{6}$ (b) x > 3 (c) See soln. 1. (a) (i) $\mathbb{R} \setminus \{1\}$ (ii) \mathbb{R} (b) (ii) $(g \circ f)(x) = \frac{1}{(x-1)^3}, x \neq 1$ (a) (i) 2 (ii) 0 (b) $x \leq 7$ (c) (i)]- $\infty,7[$ (ii) $[0,\infty[$ 2. 3. a = 0, b = 14. (a) $f(x) = 3(x-1)^2 + 4$ (b) (i) (1,4) (ii) 1 5. (c) (i) (0, 7) (ii) See soln. (a)]-1, ∞ [(b) (ii) (fog)(x) = ln(e^x + 1) (iii) \mathbb{R} 6. a = 3, b = 11, c = 27. (a) (i) 2.5 (ii) 1 (b) $f(x) = x^4 + 3x^2 + 1$ 8. (a) $(f \circ g)(x) = x e^x, x \in \mathbb{R}$ (b) 0, ln2 (c) ln2 9. (a) $f^{-1}(x) = \frac{1}{x} + 2, x \in [0,\infty[$ (b) See soln. (c) $(1 + \sqrt{2}, 1 + \sqrt{2})$ 10. (a) (i) $-\ln 2$ (ii) $-\ln 2$ (b) a > 111. (a) See soln. (b) $[2, \infty[$ (c) (i) $(f \circ g)(x) = x - 6, x \ge 2$ (ii) $[-4, \infty[$ 12. 13. (a) a = 1, b = 1 + e (b) $f^{-1}(x) = 1 + e^{x+1}, x \in \mathbb{R}$ (c) See soln. 14. $x > 1, x \neq e$ 15. (a) See soln. (b) (i) $\left\{2, -\frac{1}{3}\right\}$ (ii) $\left\{x \mid -\frac{1}{3} \le x \le 2\right\}$ 16. (a) $\left\{ x | x > -\frac{2}{3} \right\}$ (b) (i) $f^{-1}(x) = 3^{x-1} - \frac{2}{3}, x \in \mathbb{R}$ (ii) See soln. (iii) $f^{-1}(x) = \frac{1}{3}(g(x) - 2)$ 17. See soln. 18. (a) (i) g(x) = f(x-3) + 2 (ii) $g(x) = \frac{1}{x-3} + 2, x \neq 3$ (b) See soln 19. a = 2, b = -720. (a) See soln (b) (i) g(x) = f(x+1) + 2 (ii) $g(x) = (x+1)^2 + 2$ (c) (i) \emptyset (ii) 3 (iii) See soln 21. (a) 0 (b) 0 22. (a) g(x) = f(x-a) - b (b) a = 0, b = -423. (a) 2e + 3 (b) $\ln 2$ 24. (a) 0 (b) 7 25. (a) 1 (b) See soln 26.]- ∞ ,0[\cup]8, ∞ [27. (a) See soln (b) (i) 0^+ (ii) 0^+ (c) (i) \mathbb{R} (ii) See soln (iii) [0, 4]See soln (b) a = 1 (c) See soln (d) See soln 28. (a) (i) See soln (ii) 1, -2 (iii) 1, -2 (b) x < -2 or x > 129. (a)

Mathematics HL – Paper One Style Answers

30. (a) (i)
$$f(x) = \frac{1}{2} - \frac{3}{2x}$$
, $g(x) = -\frac{1}{2} + \frac{3}{2x}$ (ii) See soln
(b) $x < 0$ or $x > 1$
31. (a) (i) See soln (ii) $x < 1$ (b) $\{x | 1 < x < \sqrt{7}\} \cup \{x | x < -1\}$
32. (a) $a = 2, b = -7$ (b) $\{x | x < \frac{1}{2}, x \neq 0\}$
33. (b) 0.25
34. $a = 1.25$
35. (a) See soln (b) (i) $x < -3$ or $1 < x < 3$ (ii) $-1 < x < 0$ or $x > 3$
36. $a = \frac{4}{\pi + 2}, b = \frac{2\pi}{\pi + 2}$
37. $\{x | 0 < x < 2\}$

CIRCULAR FUNCTIONS AND TRIGONOMETRY

1.	(a)	$\frac{4}{5}$ (b)	$\frac{24}{25}$	(c)	$\frac{4}{3}$								
2.	$\sin^2\theta < \sin\theta < \frac{1}{\sin\theta}$												
3.	(a)	$\frac{\sqrt{9-a^2}}{3}$	(b)	36°	(c)	$\frac{\sqrt{3}}{4}$	(d)	-cot	θ				
4.	(a)	$-\frac{2}{\sin^2\theta}$	(b)	30°,	150°,	210°,	330°						
5.	(a)	0 (b)	(i)	$0, \frac{\pi}{2},$	π, 2π		(ii)	$\frac{3\pi}{2}$					
6.	(a)	$a = \pi, b$	= 2, c	= 41	π	(b)	$\frac{2\pi}{3}$,	$\frac{4\pi}{3}$					
7.	<i>a</i> =	$\frac{3}{2}, b = 2, a$	$c = \frac{7}{2}$										
8.	(a)	[-2, 2]	(b)	(i)	$\frac{1}{7}$	(ii)	$\frac{4}{13}$						
9.	(a)	$\frac{\pi}{2}, \frac{3\pi}{2}$	(b)	4									
10. 11.	(a) 10	$2x\sin\theta$	(b)	6									
12.	(a)	(i) $\frac{1}{4}\pi r$	2	(ii)	$\frac{1}{16}\pi$	r^2	(iii)	$\frac{1}{64}\pi r$.2	(b)	5	(c)	9
13.	<i>b</i> =	$\sqrt{3} + 1$											
14.	$\frac{1}{2}(3)$	- \sqrt{3})											
15. 16.	31 3												
		60° (b)	(i)	$\frac{2\pi}{3}$ c	cm	(ii)	$\frac{2\pi}{3}$	cm ²	(c)	2 cm	n ²		
		54° (b)		-			5						
19.	(a)	$\frac{4a}{5-a}$	(b)	$\frac{\pi}{4}$									
20.	(a)	4 (b)	8 \sqrt{3}	cm^2									
21.	(a)	8 cm	(b)	$\frac{16}{3}(3)$	3 ~ 3 -	π) cr	n ²						
22.	a = -	$-4, b = \frac{2}{3}, c$	<i>c</i> = 6										
23.	(a)	(i) 0.4	(ii)	<i>a</i> =	2, k =	= 5π,	<i>c</i> =	1	(b)	$\frac{\pi}{12}$	(c)	n < -	-m
24. 25.		See soln 28 dB 3000	(e) (b) (b)			(c) (c)			(d) (d)	1.5 s 20/3			

26. $\frac{\pi}{3}, \frac{\pi}{2}, \frac{2\pi}{3}$ 27. (a) $\cos\theta + \sin\theta$ (b) $\pi, \frac{3\pi}{4}$ 28. (a) (i) $\frac{\sqrt{7}}{4}$ (ii) $-\frac{5}{8}$ (b) $\frac{\sqrt{6} + \sqrt{182}}{16}$ 29. (a) (i) 6 (ii) a = 8, b = -1 (b) 8 30. (b) $\frac{\pi}{6}, \frac{5\pi}{6}$ 31. $\left\{\frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6}, \frac{3\pi}{2}\right\}$ 32. a = 2 = b33. (b) $\frac{-1+\sqrt{5}}{4}$ 35. $x = \frac{\pi}{3}, y = \frac{\pi}{6}$ or $x = \frac{5\pi}{6}, y = \frac{2\pi}{3}$ or $x = \frac{\pi}{6}, y = \frac{\pi}{3}$ or $x = \frac{2\pi}{3}, y = \frac{5\pi}{6}$ 36. 2 37. (a) $\frac{4\pi}{3} - 2 \text{ cm}^2$ (b) $\frac{2\pi}{3}$ from O. 38. x = a, y = b39. (a) (i) 2x m (ii) $2\sqrt{3}x$ m (ii) $\sqrt{10}x$ m (b) a = 1, b = 13, c = 440. (a) (i) [-1, 3] (ii) See soln (b) $f^{-1}(x) = \arcsin\left(\frac{x-1}{2}\right) + \frac{\pi}{2}, x \in [-1, 3]$ (c) See soln 41. (a) (i) See soln (ii) See soln (iii) $\frac{\pi}{2}$ (b) $-\frac{7}{25}$

MATRICES

1. (a) (i) 9 (ii)
$$\frac{1}{3}\begin{bmatrix} 0 & 1 \\ 3 & 2 \end{bmatrix}$$
 (b) $X = \begin{bmatrix} -3 & -1 \\ 1 & 1 \end{bmatrix}$
2. (a) (i) $\begin{bmatrix} 14 & 4 \\ 0 & -8 \end{bmatrix}$ (ii) $\begin{bmatrix} 26 & -28 \\ 39 & 21 \end{bmatrix}$ (b) $x = 2, y = -1$
3. (a) $\begin{bmatrix} 13 \end{bmatrix}$ (b) not possible (c) not possible (d) $\begin{bmatrix} 1 \\ 10 \end{bmatrix}$
(e) not possible
4. (i) 3 (ii) 2
5. (a) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$ (b) (i) $\begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & -1 \\ 3 & 1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 5 \\ 4 \\ 3 \end{bmatrix}$ (ii) $x = -1, y = 13, z = 7$
6. $x = 10, y = 2$
7. (a) $\frac{1}{10} \begin{bmatrix} -4 & 3 \\ 2 & 1 \\ 2 & 1 \end{bmatrix}$ (b) (1.2, 1.4)
8. (a) (i) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ (b) (1) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ (iii) $\begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix}$ (b) $\frac{3\pi}{4}$
9. (a) $\begin{bmatrix} 8 & 10 \\ 0 & 8 \end{bmatrix}$ (b) (i) $\begin{bmatrix} 8 & 10 \\ 0 & 8 \end{bmatrix}$ (ii) $\begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix}$
10. $2 \text{ or } -1$
11. (a) (i) -2 (ii) $-\frac{1}{2} \begin{bmatrix} 4 & -2 \\ -7 & 3 \end{bmatrix}$ (b) $x = 8, y = -13$
12. Solution of the form $\alpha, \beta = -\alpha, \gamma = 3\alpha$ where $\alpha \in \mathbb{R}$ (e.g., $\alpha = 1, \beta = -1, \gamma = 3$)
13. (a) (i) 21 (ii) $\frac{1}{2}B$ (b) $x = 4.5, y = 4, z = 3.5$
14. $x = 2 + \sqrt{2}, 2 - \sqrt{2}, 2$
15. (a) $a - 2$ (b) (i) $x = 2, y = -2, z = 0$ (ii) $\mathbb{R} \setminus \{2\}$
(b) $x = 3, b$) $x = 3\lambda - 3, y = -4\lambda + 5, z = \lambda, \lambda \in \mathbb{R}$
17. (a) (i) $\Delta = 25 - p^2$ (ii) ± 5 (b) $\mathbb{R} \setminus \{\pm5\}$
(c) When $p = 5, x = 2 - 9k, y = k, z = 8k, k \in \mathbb{R}$
18. (b) (i) $x = -1, y = -2, z = 3$

VECTORS

1. (a) (i)
$$2i + 4j$$
 (ii) $8i - j$ (b) (i) 12 (ii) $\frac{36}{325}$
2. 2
3. (a) $\binom{5}{10}$ (b) 1 (c) $\binom{0}{1}$ (d) $\sqrt{34}$
4. (a) 9 (ii) $\frac{1}{3} \begin{pmatrix} 2\\ 2\\ -1 \end{pmatrix}$ (b) $x = \frac{1}{2}, y = \frac{3}{4}$
5. (a) (i) 7 (ii) 3 (b) $7\sqrt{2}$ (c) 40
6. $\alpha = 2, \beta = -1, \gamma = 2$
7. $\frac{3}{8}$
8. $\frac{1}{3}, -1$
9. (a) 7 (b) 25 (c) 0
10. (a) $r_1 = \begin{pmatrix} 2\\ 3\\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 3\\ 3\\ 2 \end{pmatrix}, \lambda \in \mathbb{R}$ (b) $\frac{5}{2\sqrt{33}}$
11. (a) (i) $\begin{pmatrix} 5\\ 0\\ 3 \end{pmatrix}$ (ii) $\sqrt{34}$ (b) 2
12. (a) (i) $\begin{pmatrix} 1\\ 4\\ -2 \end{pmatrix}$ (ii) $\begin{pmatrix} 4\\ 1\\ -3 \end{pmatrix}$ (iii) $\begin{pmatrix} 2\\ 4\\ -4 \end{pmatrix}$ (b) $\frac{13}{3\sqrt{21}}$
(c) $-10i - 5j - 15k$
(d) (i) $2x + y + 3z = 14$ (ii) $-\frac{1}{\sqrt{14}}(2i + j + 3k)$
(e) $z = \frac{1 - y}{2} = 13 - 2x$
13. (a) 19 (b) $\frac{19}{2\sqrt{259}}$
14. (a) (7, 9, 0) (b) $r = \frac{1}{4} \begin{pmatrix} 1\\ 0\\ -9 \end{pmatrix} + \lambda \begin{pmatrix} 3/4\\ 1\\ 1/4 \end{pmatrix}$ or $r = \frac{1}{4} \begin{pmatrix} 1\\ 0\\ -9 \end{pmatrix} + \mu \begin{pmatrix} 3\\ 4\\ 1 \end{pmatrix}, \lambda, \mu \in \mathbb{R}$
(c) $\frac{x - \frac{1}{4}}{\frac{3}{4}} = \frac{y}{1} = \frac{z + \frac{9}{4}}{\frac{1}{4}}$

15. (a)
$$\frac{1}{\sqrt{5}}(2i+j)$$
 (b) $\frac{4\sqrt{5}}{21}$
16. 3
17. (a) $\alpha = -\frac{1}{3}, \beta = \frac{1}{2}$ (b) $\frac{3}{2}\sqrt{38}$ sq. units
18. $2x - y + 3z = -1$
19. $\mathbf{r} \cdot \mathbf{n} = -5$
20. (a) $\hat{\mathbf{n}}_1 = \frac{1}{\sqrt{6}}(-i+2j+k), \hat{\mathbf{n}}_2 = \frac{1}{5}(3i+4j)$ (b) $\frac{1}{\sqrt{6}}$
21. (a) -36 (b) (i) $\begin{pmatrix} -3\\ -1\\ 4 \end{pmatrix}$ (ii) $\begin{pmatrix} 1\\ 1\\ 6 \end{pmatrix}$ (c) $5x - 11y + z = -18$
22. $\begin{pmatrix} \frac{17}{15}, -\frac{27}{15}, \frac{13}{15} \end{pmatrix}$
23. $a = 3, b = 29$
(3) (4) (5)

25.
$$a = 5, b = 29$$

24. (a) $r = \begin{pmatrix} 3\\4\\2 \end{pmatrix} + \lambda \begin{pmatrix} 4\\3\\3 \end{pmatrix} + \mu \begin{pmatrix} 5\\2\\1 \end{pmatrix}, \lambda, \mu \in \mathbb{R}$ (b) $3x - 11y + 7z = -21$

STATISTICS AND PROBABILITY

1. 2.	(a) 0.05	0.5	(b)	(i)	56.60)	(ii)	3.5						
2. 3.	(a)	a	(b)	1 – 2	а									
4.	(a)	0.07	(b)	0.86	(c)	$\frac{86}{93}$								
5.	(a)	See a	soln	(b)	(i)	4.6	(ii)	3	(iii)	4				
6.	(a)	x	(b)	x + 1		(c)	$46\frac{1}{3}$							
7.	(a)	$\frac{9}{22}$	(b)	$\frac{1}{22}$										
8.	(a)	(i)	3 yrs		(ii)	3.8	(iii)	1.8	(b)	$\frac{11}{14}$				
9.	(a)	$\frac{11}{20}$	(b)	(i)	2.8	(ii)	0.86		(c)	(i)	$\frac{9}{400}$	(ii)	$\frac{7}{40}$	
10.	(a)	0.92		(b)	90	(c)	63							
11.	(a)	$\frac{8}{125}$		(b)	$\frac{36}{125}$									
12.	(a)	$\frac{1}{2}x +$	$-\frac{1}{8}$	(b)	(i)	$\overline{16x^2}$	$\frac{16x^2}{x^2+8x}$	+ 1						
13.	(a)	(i)	3 <i>x</i>	(ii)	4 <i>x</i>	(b)	$\frac{1}{3}$	(c)	$\frac{20}{27}$					
14.	(a)	$\frac{8}{9}$	(b)	(i)	$\frac{8}{3}$	(ii)	$\frac{4}{3}$							
15.	(a)	24	(b)	336										
16.	See												9	
17.	(a)	0.06		(b)	0.21		(c)	0.44		(d)	0.79	(e)	$\frac{9}{44}$	
18.	(a)	(i)	$\frac{5}{32}$	(ii)	$\frac{3}{16}$	(iii)	$\frac{31}{32}$	(b)	2.5					
19. 20		8, <i>b</i> =	11											
20. 21.	a = 1 See s	18, <i>b</i> = soln	= 0											
22.		25, <i>b</i> =	= 6											
23.	$\frac{n+1}{2^{n-1}}$	<u>1</u> 1												
24.		•	(b)	-		-								
25.	(a)	0.5	(b)	See s	soln	(c)	(i)	$\frac{2-1}{4}$	$\sqrt{2}$	(ii)	0.25 (d)	$\frac{\pi}{2}$	(e)	$\frac{\pi}{2}$
											ſ 0,		<i>x</i> < 0)
26.	(a)	$\frac{4}{\pi}$	(b)	$\frac{2}{2}$	(c)	b = 4	1	(d)	(i)	F(x)	$0 = \begin{cases} 0, \\ \frac{4}{\pi} \arctan n \\ 1, \end{cases}$	n(x),	$0 \le x$	≤1
		π		3									x > 1	
											-,		1	

(ii) See soln (iii)
$$c = 8$$

27. (a) (i) $F(x) = \begin{cases} 0, & x < 0 \\ 1 - \frac{1}{x+1}, & x \ge 0 \end{cases}$ (ii) See soln (b) $c_q = \frac{1}{1-q} - 1$
(c) (i) 1 (ii) $\frac{8}{3}$ (iii) 19
28. $\frac{408}{2187}$

CALCULUS

1. y = 2x2. (a) (i) $\frac{1}{2}$ (ii) 2 (b) $\frac{27}{8}\sqrt{2}$ 3. See soln 4. (a) $\frac{1}{\sqrt{3}} + \frac{2\pi}{9}$ (b) $y = \left(1 + \frac{\pi}{2}\right)x - \frac{\pi^2}{8}$ 5. -2 6. (a) (i) $\frac{1 - \ln(x)}{x^2}$ (ii) $(\sin x)(\cos(\cos x))$ (iii) $\frac{4(1+x)}{(1-x)^3}$ 7. (a) (i) $3x^2 + 12x + 9$ (ii) -1, -3(b) (i) $x^3 + 6x^2 + 9x + 4$ (ii) (-4, 16) (iii) $\frac{27}{4}$ sq. units 8. (a) 12 (b) $\frac{1}{2}e^2 - \frac{1}{2} + \ln(2)$ 9. $\frac{16}{9}$ 10. (a) $\frac{2}{3}a(3\sqrt{3}-2\sqrt{2})$ (b) (i) $2a\sqrt{\frac{a+x}{a}} + x\sqrt{\frac{a}{a+x}}$ (ii) $\frac{2}{3}a^2\sqrt{2}$ 11. (a) $\frac{\pi^3}{24}$ (b) (i) $\sin(2x) + 2x\cos(2x)$ (ii) -1 12. (a) (i) $\frac{t}{t+1}$ (ii) $1 - \ln(2)$ (b) (i) $\frac{2t+2}{t^2+2t+1}$ (ii) $\frac{t^2}{(t+1)^2}$ (iii) $1.5 - 2\ln(2)$ 13. (a) $\ln(2) - 2$ (b) $\frac{\pi}{4} + \frac{1}{2}$ 14. (a) 7 (b) 15 + a (b) $\frac{8}{a}$ 15. (a) (i) 4 (ii) 0.25 (b) 1 16. (a) 18 (b) $\frac{104}{3}$ sq. units 17. (a) (i) 4 (ii) 0 (b) $\frac{\pi}{2}$ 18. $6 - 4\sin(1)$ 19. (a) $\frac{101}{30}$ (b) (i) $\frac{202}{3}$ (ii) 2460 20. (a) $\frac{40}{3}\sqrt{5}$ sq. units (b) $\frac{625}{12}\pi$ cubic units 21. (a) 6x - 4 (b) (i) $-\frac{2}{3}$, 2 (ii) min at x = 2, max at $x = -\frac{2}{3}$ (c) $\frac{2}{3}$ 22. (a) 1 sq. units (b) $\frac{\pi^2}{4}$ cubic units

(b) (i) 10-2x (ii) 25 sq. units 23. (a) See soln 24. $\frac{52}{15}\pi$ cubic units 25. (a) $\frac{b}{x_0}$ (b) $y = \frac{b}{x_0}x - b + y_0$ 26. (a) *a* sq units (b) $\frac{8}{3}$ 27. (a) (i) 0 (ii) $-a\pi$ 28. (a) (i) $3x^2\cos(2x) - 2x^3\sin(2x)$ (ii) $(6x - 4x^3)\cos(2x) - 12x^2\sin(2x)$ (b) *e* (a) -24 (b) 0 29. 30. (a) See soln (b) 5.5 units 31. (b) $x = \frac{12}{33}(6 + \sqrt{3}), y = \frac{6}{11}(5 - \sqrt{3})$ 32. (a) $\frac{1}{2}\sin 2$ (b) $-\frac{1}{\sqrt{3}}$ 33. y = 134. $y = -x + 2\pi$ 35. (a) See soln (b) $\frac{7}{3}$ sq. units (c) $\frac{5\pi}{6}$ cubic units 36. (a) (i) See soln (ii) $v^2 = s^2 - 2s + \ln(s+1) + 4$ (b) 3 37. (a) y = 0 (b) $x = \frac{\pi}{2}$ 38. 1 39. (a) (i) $(\ln 2)y = 2x - 1 + \ln 2$ (ii) $(\ln 2)y = x - 1$ (b) $\frac{1 - \ln 2}{(\ln 2)^2}$ 40. (a) 1.5 (b) $2(2 - \arctan(2))$ 41. (a) 2 (b) $\frac{19}{4}$ 42. $2 - \sqrt{2}$ 43. (a) $\frac{\sqrt{4-x^2}}{2}$ (b) (i) $2\arcsin\left(\frac{x}{2}\right) - \frac{x}{2}\sqrt{4-x^2} + c, |x| \le 2$ (ii) $-\frac{1}{3}\sqrt{(4-x^2)^3} + c, |x| \le 2$ 44. (a) (i) $(1, e^{-1})$ (ii) $(2, 2e^{-2})$ (b) See soln (c) (i) $0 < k < \frac{1}{e}$ (ii) $k \le 0$ or $k = \frac{1}{e}$ (iii) $k > \frac{1}{e}$ 45. $\frac{1}{60}$ cm s⁻¹ 46. 1 m s⁻¹ 47. (a) (i) $8e^{-1}$ m s⁻¹ (ii) $-4e^{-2}$ m s⁻² (b) $16(1-2e^{-1})$ m 48. (a) $-\sqrt{3}$ (b) -0.5

Mathematics HL – Paper One Style Answers

49. (a) (i)
$$\frac{1}{2}(\ln x)^2 + c$$
 (ii) $\frac{1}{2}x^2\ln(x) - \frac{1}{4}x^2 + c$
(b) (i) $f \leftrightarrow C_2, g \leftrightarrow C_1$ (ii) $A \equiv (1, 0), B \equiv (3, \ln 3)$
(iii) $\frac{9}{2}(\ln 3)[(\ln 3) - 1] + 2$ sq. units
50. $y = -\sqrt{2\ln x - x^2 + 2}$
51. $y = e^{\frac{1}{2}\arctan(x)}$
52. (a) $\frac{1}{y(y-1)}$ (b) $y = \frac{2}{2-x}, x > 0, y > 1$ (c) See soln
53. (a) $R = 60 - 50e^{-\frac{1}{15}t}, t \ge 0$ (b) $15\ln(1.25)$ hrs